Azelaic and hexanoic acids‐inducing resistance in soybean against Phakopsora pachyrhizi infection

Author:

Rodrigues Flávia Caroline Torres1,Silveira Patricia Ricardino1,Cacique Isaias Severino1,Oliveira Lillian Matias1,Rodrigues Fabrício A.1ORCID

Affiliation:

1. Departamento de Fitopatologia, Laboratório da Interação Planta‐Patógeno Universidade Federal de Viçosa Viçosa MG Brazil

Abstract

AbstractRust in soybean, caused by Phakopsora pachyrhizi, has been controlled using different fungicide molecules. This study pinpoints the use of inducers of resistance as a promising alternative by investigating the hypothesis that reduction in rust symptoms on soybean sprayed with azelaic acid (AzA) and hexanoic acid (HxA) is linked to a fungistatic effect against urediniospore germination of P. pachyrhizi and/or through the potentiation of host defence reactions. A 4 × 2 factorial experiment was designed consisting of plants sprayed with water (control), acibenzolar‐S‐methyl (ASM), AzA or HxA and either non‐inoculated or inoculated with P. pachyrhizi. Both AzA and HxA significantly inhibited urediniospore germination in vitro. The area under disease progress curve significantly decreased for ASM, HxA (5 and 20 mM) and AzA (0.1 and 1 mM), and fewer hyphae of P. pachyrhizi colonized tissues of plants sprayed with ASM, HxA (20 mM) and AzA (1 mM), compared to control. Host defence genes were strongly up‐regulated for infected plants sprayed with AzA, ASM and HxA compared to water. Most of these genes were expressed earlier for infected and HxA‐sprayed plants than for infected and AzA‐sprayed plants and at greater expression levels than infected and ASM‐sprayed plants. The physiological, biochemical and molecular responses obtained with AzA‐ and HxA‐sprayed plants were comparable to ASM, a well‐known inducer of resistance. This study highlights the potential of using AzA and HxA for rust management considering their fungistatic effect against urediniospores and the capacity to provide soybean plants with a more efficient defence against P. pachyrhizi infection.

Publisher

Wiley

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3