Diversity, domain duplication, birth‐and‐death and adaptive evolution of fatty acyl‐CoA reductase genes in Hemiptera

Author:

Di Zhongjuan12ORCID,Tian Jiahui13,Ali Muhammad Yasir4,Zhang Biyun12,Yang Shiyong3,Fu Yuejun2,Li Fengqi1ORCID,Luo Chen1ORCID

Affiliation:

1. Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China

2. Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology Shanxi University Taiyuan China

3. School of Ecology and Environment Anhui Normal University Wuhu China

4. MARA‐CABI Joint Laboratory for Bio‐safety, Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China

Abstract

AbstractFatty acyl‐CoA reductases (FARs) play an important role in the synthesis of fatty alcohols in various organisms. Based on the important function of FAR genes, they can be used as a potential molecular target for controlling agricultural pests. Although the FAR genes have been studied in a number of insects, the gain, loss, and molecular evolution of FAR genes between different Hemipteran species still require comprehensive and systematic study. This study systematically identified and analysed 352 FAR genes from 12 Hemipteran species, including six typical true bug species, Cimex lectularius, Apolygus lucorum, Halyomorpha halys, Oncopeltus fasciatus, Rhodnius prolixus and Gerris buenoi. The number of FAR genes per species ranged from 17 to 43, and a phylogenetic analysis showed that the identified FAR genes of Hemiptera can be classified into 11 clades. The gain and loss of FAR genes have occurred in some Hemipteran species. These FAR genes conform to the birth‐and‐death model in the evolutionary process. Through selection pressure analysis, we determined that G. buenoi in clade 11 evolved under the pressure of positive selection, with the evolutionary sites of A at position 214 and T at position 451, thus clarifying the differences in amino acids among species and providing a better understanding of the molecular evolutionary mechanism of Hemipteran FAR. In addition, structural analysis of the FAR genes revealed duplication of the two conservative domains, the Rossmann‐fold domain and the sterile domain, of the FAR in four species, namely Bemisia tabaci, Diaphorina citri, R. prolixus and Trialeurodes vaporariorum. This study lays a foundation for further studies on the molecular functions of Hemiptera FAR, and provides a possible new target for the control of Hemiptera, especially the stink bugs.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Wiley

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3