A comprehensive normative reference database of muscle morphology in typically developing children aged 3–18 years—a cross‐sectional ultrasound study

Author:

Peeters Nicky12ORCID,Hanssen Britta12ORCID,De Beukelaer Nathalie1,Vandekerckhove Ines1ORCID,Walhain Fenna13,Huyghe Ester1,Dewit Tijl14,Feys Hilde1,Van Campenhout Anja56,Van den Broeck Christine2,Calders Patrick2,Desloovere Kaat14

Affiliation:

1. Department of Rehabilitation Sciences, KU Leuven Leuven Belgium

2. Department of Rehabilitation Sciences University of Ghent Ghent Belgium

3. Department of Anatomy Anton de Kom University of Suriname Paramaribo Suriname

4. Clinical Motion Analysis Laboratory University Hospitals Leuven Pellenberg Belgium

5. Department of Pediatric Orthopedics, Department of Orthopedics University Hospitals Leuven Leuven Belgium

6. Department of Development and Regeneration KU Leuven Leuven Belgium

Abstract

AbstractDuring childhood, muscle growth is stimulated by a gradual increase in bone length and body mass, as well as by other factors, such as physical activity, nutrition, metabolic, hormonal, and genetic factors. Muscle characteristics, such as muscle volume, anatomical cross‐sectional area, and muscle belly length, need to continuously adapt to meet the daily functional demands. Pediatric neurological and neuromuscular disorders, like cerebral palsy and Duchenne muscular dystrophy, are characterized by impaired muscle growth, which requires treatment and close follow‐up. Nowadays ultrasonography is a commonly used technique to evaluate muscle morphology in both pediatric pathologies and typically developing children, as it is a quick, easy applicable, and painless method. However, large normative datasets including different muscles and a large age range are lacking, making it challenging to monitor muscle over time and estimate the level of pathology. Moreover, in order to compare individuals with different body sizes as a result of age differences or pathology, muscle morphology is often normalized to body size. Yet, the usefulness and practicality of different normalization techniques are still unknown, and clear recommendations for normalization are lacking. In this cross‐sectional cohort study, muscle morphology of four lower limb muscles (medial gastrocnemius, tibialis anterior, the distal compartment of the semitendinosus, rectus femoris) was assessed by 3D‐freehand ultrasound in 118 typically developing children (mean age 10.35 ± 4.49 years) between 3 and 18 years of age. The development of muscle morphology was studied over the full age range, as well as separately for the pre‐pubertal (3–10 years) and pubertal (11–18 years) cohorts. The assumptions of a simple linear regression were checked. If these assumptions were fulfilled, the cross‐sectional growth curves were described by a simple linear regression equation. Additional ANCOVA analyses were performed to evaluate muscle‐ or gender‐specific differences in muscle development. Furthermore, different scaling methods, to normalize muscle morphology parameters, were explored. The most appropriate scaling method was selected based on the smallest slope of the morphology parameter with respect to age, with a non‐significant correlation coefficient. Additionally, correlation coefficients were compared by a Steiger's Z‐test to identify the most efficient scaling technique. The current results revealed that it is valid to describe muscle volume (with exception of the rectus femoris muscle) and muscle belly length alterations over age by a simple linear regression equation till the age of 11 years. Normalizing muscle morphology data by allometric scaling was found to be most useful for comparing muscle volumes of different pediatric populations. For muscle lengths, normalization can be achieved by either allometric and ratio scaling. This study provides a unique normative database of four lower limb muscles in typically developing children between the age of 3 and 18 years. These data can be used as a reference database for pediatric populations and may also serve as a reference frame to better understand both physiological and pathological muscle development.

Funder

Fonds Wetenschappelijk Onderzoek

KU Leuven

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3