Influence of water‐level variability on fish assemblage and natural reproduction following connectivity enhancement in a Typha‐dominated coastal wetland, USA

Author:

Leblanc John Paul1ORCID,Farrell John M.1

Affiliation:

1. College of Environmental Science and Forestry and Thousand Islands Biological Station State University of New York Syracuse New York USA

Abstract

AbstractWe evaluated a wetland habitat modification strategy to contrast fish assemblage structure and the production of young‐of‐the‐year (YOY) fish between different engineered habitats (i.e., spawning pool complexes and connectivity channels) relative to unmodified lateral channels in a large drowned river mouth tributary of the St Lawrence River. Prior to habitat modifications, the coastal wetland was impaired by water level regulations and dominance of the invasive hybrid cattail, Typha × glauca, which collectively replaced or created barriers to seasonally flooded spawning habitats important to fish. Connectivity enhancements provided fish access along a wetland habitat gradient from sedge‐meadows to the deeper water robust emergent main channel. Across an 8‐year fish emigration dataset (2012, 2013, 2016–2021) more than 90% of all captured fish (Ntotal = 218,086 fish) were YOY and modified habitats outperformed the unmodified channels in total fish catch‐per‐unit‐effort (CPUE) per year (both YOY and non‐YOY). Spawning pool complexes had higher YOY species richness than unmodified channel habitats. Fish assemblage structure differed between the modified habitats, where connectivity channels and unmodified channels shared a more similar fish assemblage than spawning pool complexes. Modified habitats, however, supported warmer water and higher dissolved oxygen than the unmodified channels. Redundancy analysis and linear mixed‐effect modelling with abiotic variables (hydrology, temperature and dissolved oxygen) showed significant effects on fish assemblage structure, species richness and CPUE of fish emigrating from the modified and unmodified habitats. Historic flooding in 2017 and 2019 was a primary driver of YOY fish production and fish assemblage structure, but also appeared to be associated with near anoxic conditions systemwide. YOY fish for several species was inversely affected by floods at spawning pool complexes, but CPUE of YOY fish for these species appeared unaffected at the connectivity channels despite low dissolved oxygen. Diversified habitat structure (i.e., connectivity channels and spawning pool complexes) offers a management option to enhance habitat for fish that allowed compensatory effects on the capture of YOY fish of several species during floods. This multifaceted outcome from the habitat modifications resulted in unique fish assemblages between the channelized and spawning pool habitat. A connectivity‐based habitat enhancement strategy provides adaptability for an uncertain climatic and regulatory future for the Laurentian Great Lakes and St Lawrence River.

Funder

National Fish and Wildlife Foundation

National Oceanic and Atmospheric Administration

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3