Metabolic rewiring enables ammonium assimilation via a non‐canonical fumarate‐based pathway

Author:

Mardoukhi Mohammad Saba Yousef1,Rapp Johanna2,Irisarri Iker34,Gunka Katrin5,Link Hannes2,Marienhagen Jan67ORCID,de Vries Jan34ORCID,Stülke Jörg5ORCID,Commichau Fabian M.1ORCID

Affiliation:

1. FG Molecular Microbiology, Institute for Biology University of Hohenheim Stuttgart Germany

2. Interfaculty Institute for Microbiology and Infection Medicine Tübingen University of Tübingen Tübingen Germany

3. Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMB Georg‐August‐University Göttingen Göttingen Germany

4. Campus Institute Data Science University of Göttingen Göttingen Germany

5. Department of General Microbiology, Institute for Microbiology and Genetics, GZMB Georg‐August‐University Göttingen Göttingen Germany

6. Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich Jülich Germany

7. Institut of Biotechnology RWTH Aachen University Aachen Germany

Abstract

AbstractGlutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT‐deficient B. subtilis mutant to synthesize glutamate via a non‐canonical fumarate‐based ammonium assimilation pathway. We also show that the de‐repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3