Three dimensional printed biofilms: Fabrication, design and future biomedical and environmental applications

Author:

Lazarus Emily1,Meyer Anne S.2,Ikuma Kaoru3,Rivero Iris V.145ORCID

Affiliation:

1. Department Industrial and Systems Engineering Rochester Institute of Technology Rochester New York USA

2. Department of Biology University of Rochester Rochester New York USA

3. Department of Civil, Construction, and Environmental Engineering Iowa State University Ames Iowa USA

4. Department of Biomedical Engineering Rochester Institute of Technology Rochester New York USA

5. Department of Industrial and Systems Engineering University of Florida Gainesville Florida USA

Abstract

AbstractThree dimensional printing has emerged as a widely acceptable strategy for the fabrication of mammalian cell laden constructs with complex microenvironments for tissue engineering and regenerative medicine. More recently 3D printed living materials containing microorganisms have been developed and matured into living biofilms. The potential for engineered 3D biofilms as in vitro models for biomedical applications, such as antimicrobial susceptibility testing, and environmental applications, such as bioleaching, bioremediation, and wastewater purification, is extensive but the need for an in‐depth understanding of the structure–function relationship between the complex construct and the microorganism response still exists. This review discusses 3D printing fabrication methods for engineered biofilms with specific structural features. Next, it highlights the importance of bioink compositions and 3D bioarchitecture design. Finally, a brief overview of current and potential applications of 3D printed biofilms in environmental and biomedical fields is discussed.

Funder

Arnold and Mabel Beckman Foundation

National Science Foundation

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3