High‐phosphate diet causes atrial remodeling and increases atrial fibrillation vulnerability via STAT3/NF‐κB signaling and oxidative stress

Author:

Hsu Yu‐Juei12,Chang Gwo‐Jyh34ORCID,Lai Ying‐Ju45,Chan Yi‐Hsin46,Chen Wei‐Jan46,Kuo Chi‐Tai46,Yeh Yung‐Hsin46ORCID

Affiliation:

1. Division of Nephrology, Department of Internal Medicine Tri‐Service General Hospital Taipei Taiwan

2. Department of Biochemistry National Defense Medical Center Taipei Taiwan

3. Graduate Institute of Clinical Medical Sciences, Chang‐Gung University Taoyuan Taiwan

4. College of Medicine Chang‐Gung University Taoyuan Taiwan

5. Department of Respiratory Therapy Chang‐Gung University Taoyuan Taiwan

6. Cardiovascular Division Chang‐Gung Memorial Hospital Taoyuan Taiwan

Abstract

AbstractAimHyperphosphatemia is associated with adverse cardiovascular outcomes in both the general population and patients with end‐stage renal disease. We evaluated whether high inorganic phosphate (Pi) intake causes atrial remodeling and increased atrial fibrillation (AF) risk.MethodsThe 5/6 nephrectomized chronic kidney disease (CKD) mice were fed a high‐Pi (2%) diet for 10 weeks. AF vulnerability was evaluated through transesophageal burst atrial pacing. Phosphoproteomic, Western blotting, and immunohistochemistry were used to evaluate the effects of high Pi in atrial fibroblasts, atrial myocytes, and HL‐1 myocytes.ResultsCKD and sham mice fed a high‐Pi diet exhibited increased AF vulnerability, atrial fibrosis, and oxidative stress compared with mice fed a normal diet. Compared with normal (1 mM) Pi, high (2 mM) Pi significantly increased the activity of atrial fibroblasts and mitochondrial oxidative stress. Phosphoproteomic analysis revealed that compared with normal Pi, high Pi considerably increased the phosphorylation of intracellular proteins in atrial fibroblasts, including proteins related to NF‐κB signaling and STAT3. Inhibition of NF‐κB, STAT3, and Nox4 by small interfering RNA reduced the high‐Pi‐induced expression of collagen. In HL‐1 myocytes, the high Pi induced the degradation of myofibril proteins and hyperphosphorylation of RyR2, which was abolished by Nox4 and CaMKII inhibition. Switching back to a normal‐Pi diet improved the atrial abnormalities induced by high‐Pi diet.ConclusionsHigh‐Pi intake causes atrial structural and electrical remodeling and increases AF vulnerability, which is mediated through STAT3/NF‐κB signaling and oxidative stress. High dietary Pi intake can exert detrimental effects on atria and may increase AF risk.

Funder

Chang Gung Medical Foundation

Ministry of Science and Technology

Publisher

Wiley

Subject

Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3