Muscle shape changes in Parkinson's disease impair function during rapid contractions

Author:

Monte Andrea1ORCID,Magris Riccardo1,Nardello Francesca1,Bombieri Federica1,Zamparo Paola1ORCID

Affiliation:

1. Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy

Abstract

AbstractAimParkinson's disease (PD) is a progressive neurodegenerative disorder characterized, among the others, by muscle weakness. PD patients reach lower values of peak torque during maximal voluntary contractions but also slower rates of torque development (RTD) during explosive contractions. The aim of this study was to better understand how an impairment in structural/mechanical (peripheral) factors could explain the difficulty of PD patients to raise torque rapidly.MethodsParticipants (PD patients and healthy matched controls) performed maximum voluntary explosive fixed‐end contraction of the knee extensor muscles during which dynamic muscle shape changes (in muscle thickness, pennation angle, and belly gearing: the ratio between muscle belly velocity and fascicle velocity), muscle‐tendon unit (MTU) stiffness and EMG activity of the vastus lateralis (VL) were investigated. Both the affected (PDA) and less affected limb (PDNA) were investigated in patients.ResultsControl participants reached higher values of peak torque and showed a better capacity to express force rapidly compared to patients (PDA and PDNA). EMG activity was observed to differ between patients (PDA) and controls, but not between controls and PDNA. This suggests a specific neural/nervous effect on the most affected side. On the contrary, MTU stiffness and dynamic muscle shape changes were found to differ between controls and patients, but not between PDA and PDNA. Both sides are thus similarly affected by the pathology.ConclusionThe higher MTU stiffness in PD patients is likely responsible for the impaired muscle capability to change in shape which, in turn, negatively affects the torque rise.

Publisher

Wiley

Subject

Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3