Resource conundrum in Mongolia: Soil contamination from coal and copper–molybdenum mining

Author:

Sodnomdarjaa Enkhjargal12ORCID,Knippertz Martin1,Karthe Daniel234,Alekseenko Alexey V.3,Ganbat Gantuya2,Römer Wolfgang1,Lehmkuhl Frank1

Affiliation:

1. Department of Geography, Chair of Physical Geography and Geoecology RWTH Aachen University Aachen Germany

2. Faculty of Raw Materials and Environmental Engineering German‐Mongolian Institute for Resources and Technology (GMIT) Nalaikh, Ulaanbaatar Mongolia

3. Institute for Integrated Management of Material Fluxes and of Resources, United Nations University Dresden Germany

4. Faculty of Environmental Sciences Technische Universität Dresden Dresden Germany

Abstract

AbstractSoil contamination and the resulting ecological disturbances are a common phenomenon in mining areas, including the vicinities of the largest and oldest open‐pit mining areas in Mongolia. In this work, the potential ecological risk index (RI), Nemerow integrated pollution index (PIN), and Geoaccumulation index (Igeo) were used to estimate the level of soil contamination with Ni, Cu, Zn, As, Cr, and Pb in the top layer of the soils around Baganuur coal mine and Erdenet copper–molybdenum mine. Three different analytical methods were used: portable X‐ray fluorescence (pXRF) for the first assessment of samples, and stationary X‐ray fluorescence and Inductively Coupled Plasma Optical Emission Spectroscopy for the confirmation of results in the laboratory. Even though general contamination levels in both study areas were relatively low, some potentially toxic elements were found at contents several times higher than the maximum permissible level (MPL) according to the national standard of Mongolia. In the Baganuur area, Zn was up to 2.8 and As was up to 3.00 times higher, while in the Erdenet area, As was up to 2.4, Cr was up to 1.7, Cu was up to 8.1, and Zn was up to 1.2 times higher than MPL of the national standard in the vicinity to the mining and industrial area. The estimation of the pXRF measurement had generally similar results to the other two laboratory methods based on spatial distributions of heavy metal content. Among the different geochemical indices, the PIN showed a more accurately distinguished spatial distribution of contamination. For example, highly contaminated areas were found in the vicinity of the open pit, the tailings pond and the industrial area based on PIN results: 3.6%–4.9% of the total area in Baganuur and 3.1%–4.9% of the total area in Erdenet. The identified pollution levels emphasize the essential need for soil rehabilitation in mining areas, a key factor for Mongolia's economic development and environmental stability. In addition, the lack of documented soil rehabilitation initiatives underscores the pressing need for enhanced environmental responsibility in the country's expanding mining sector.

Publisher

Wiley

Reference71 articles.

1. Неаvy metals in the ecological objects of thе region non‐ferrous industry of thе Erdenet, Mongolia;Baljinnyam N.;Scientific Transaction of the National University of Mongolia, Physics,2009

2. Batbaatar B.(2016).Geoecological problems of mining the Erdenet deposit and the problem of waste reclamation (Mongolia)(Bachelor thesis). Tomsk Polytechnic University Tomsk (p. 92). (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3