Morphology‐based molecular classification of spinal cord ependymomas using deep neural networks

Author:

Schumann Yannis1ORCID,Dottermusch Matthias23,Schweizer Leonille456,Krech Maja7,Lempertz Tasja2,Schüller Ulrich389ORCID,Neumann Philipp1ORCID,Neumann Julia E.23ORCID

Affiliation:

1. Chair for High Performance Computing Helmut‐Schmidt‐University Hamburg Hamburg Germany

2. Center for Molecular Neurobiology (ZMNH) University Medical Center Hamburg‐Eppendorf (UKE) Hamburg Germany

3. Institute of Neuropathology, UKE Hamburg Germany

4. Institute of Neurology (Edinger Institute) University Hospital Frankfurt, Goethe University Frankfurt am Main Germany

5. German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ) Heidelberg Germany

6. Frankfurt Cancer Institute (FCI) Frankfurt am Main Germany

7. Institute for Neuropathology, Charité Berlin Berlin Germany

8. Research Institute Children's Cancer Center Hamburg, UKE Hamburg Germany

9. Department of Pediatric Hematology and Oncology UKE Hamburg Germany

Abstract

AbstractBased on DNA‐methylation, ependymomas growing in the spinal cord comprise two major molecular types termed spinal (SP‐EPN) and myxopapillary ependymomas (MPE(‐A/B)), which differ with respect to their clinical features and prognosis. Due to the existing discrepancy between histomorphogical diagnoses and classification using methylation data, we asked whether deep neural networks can predict the DNA methylation class of spinal cord ependymomas from hematoxylin and eosin stained whole‐slide images. Using explainable AI, we further aimed to prospectively improve the consistency of histology‐based diagnoses with DNA methylation profiling by identifying and quantifying distinct morphological patterns of these molecular ependymoma types. We assembled a case series of 139 molecularly characterized spinal cord ependymomas (nMPE = 84, nSP‐EPN = 55). Self‐supervised and weakly‐supervised neural networks were used for classification. We employed attention analysis and supervised machine‐learning methods for the discovery and quantification of morphological features and their correlation to the diagnoses of experienced neuropathologists. Our best performing model predicted the DNA methylation class with 98% test accuracy and used self‐supervised learning to outperform pretrained encoder‐networks (86% test accuracy). In contrast, the diagnoses of neuropathologists matched the DNA methylation class in only 83% of cases. Domain‐adaptation techniques improved model generalization to an external validation cohort by up to 22%. Statistically significant morphological features were identified per molecular type and quantitatively correlated to human diagnoses. The approach was extended to recently defined subtypes of myxopapillary ependymomas (MPE‐(A/B), 80% test accuracy). In summary, we demonstrated the accurate prediction of the DNA methylation class of spinal cord ependymomas (SP‐EPN, MPE(‐A/B)) using hematoxylin and eosin stained whole‐slide images. Our approach may prospectively serve as a supplementary resource for integrated diagnostics and may even help to establish a standardized, high‐quality level of histology‐based diagnostics across institutions—in particular in low‐income countries, where expensive DNA‐methylation analyses may not be readily available.

Publisher

Wiley

Subject

Neurology (clinical),Pathology and Forensic Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3