Repeated local ellipsoid protrusion supplements HLA surface characterization

Author:

Niemann Matthias1ORCID,Matern Benedict M.12ORCID,Spierings Eric23ORCID

Affiliation:

1. Research and Development PIRCHE AG Berlin Germany

2. Center for Translational Immunology University Medical Center Utrecht Netherlands

3. Central Diagnostic Laboratory University Medical Center Utrecht Netherlands

Abstract

Allorecognition of donor HLA is a major risk factor for long‐term kidney graft survival. Although several molecular matching algorithms have been proposed that compare physiochemical and structural features of the donors' and recipients' HLA proteins in order to predict their compatibility, the exact underlying mechanisms are still not fully understood. We hypothesized that the ElliPro approach of single ellipsoid fitting and protrusion ranking lacks sensitivity for the characteristic shape of HLA molecules and developed a prediction pipeline named Snowball that is fitting smaller ellipsoids iteratively to substructures. Aggregated protrusion ranks of locally fitted ellipsoids were calculated for 712 publicly available HLA structures and 78 predicted structures using AlphaFold 2. Amino‐acid sequence and protrusion ranks were used to train deep neural network predictors to infer protrusion ranks for all known HLA sequences. Snowball protrusion ranks appear to be more sensitive than ElliPro scores in fine parts of the HLA such as the helix structures forming the HLA binding groove in particular when the ellipsoids are fitted to substructures considering atoms within a 15 Å radius. A cloud‐based web service was implemented based on amino‐acid matching considering both protein‐ and position‐specific surface area and protrusion ranks extending the previously presented Snowflake prediction pipeline.

Publisher

Wiley

Subject

Genetics,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3