Effects of warming on seed germination of woody species in temperate secondary forests

Author:

Yuan J.1234,Yan Q.124ORCID,Xie J.5,Wang J.6,Zhang T.124

Affiliation:

1. Qingyuan Forest CERN, National Observation and Research Station Shenyang Liaoning Province China

2. CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Shenyang China

3. University of Chinese Academy of Sciences Beijing China

4. Key Laboratory of Terrestrial Ecosystem Carbon Neutrality Shenyang Liaoning Province China

5. Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research Institute of Genetic and Developmental Biology, Chinese Academy of Sciences Shijiazhuang China

6. School of Life Sciences Zhengzhou University Zhengzhou China

Abstract

ABSTRACT Seed germination, a critical stage of the plant life cycle providing a link between seeds and seedlings, is commonly temperature‐dependent. The global average surface temperature is expected to rise, but little is known about the responses of seed germination of woody plants in temperate forests to warming. In the present study, dried seeds of 23 common woody species in temperate secondary forests were incubated at three temperature sequences without cold stratification and after experiencing cold stratification. We calculated five seed germination indices and the comprehensive membership function value that summarized the above indicators. Compared to the control, +2 and +4 °C treatments without cold stratification shortened germination time by 14% and 16% and increased the germination index by 17% and 26%, respectively. For stratified seeds, +4 °C treatment increased germination percentage by 49%, and +4 and +2 °C treatments increased duration of germination and the germination index, and shortened mean germination time by 69%, 458%, 29% and 68%, 110%, 12%, respectively. The germination of Fraxinus rhynchophylla and Larix kaempferi were most sensitive to warming without and with cold stratification, respectively. Seed germination of shrubs was the least sensitive to warming among functional types. These findings indicate warming (especially extreme warming) will enhance the seedling recruitment of temperate woody species, primarily via shortening the germination time, particularly for seeds that have undergone cold stratification. In addition, shrubs might narrow their distribution range

Funder

Liaoning Revitalization Talents Program

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3