Microstructural basis of AI predictions for material properties: A case study of silicon nitride ceramics using t‐SNE

Author:

Furushima Ryoichi1ORCID,Nakashima Yuki1ORCID,Maruyama Yutaka1ORCID,Zhou You1ORCID,Hirao Kiyoshi1ORCID,Ohji Tatsuki1ORCID,Fukushima Manabu1ORCID

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST) Nagoya Japan

Abstract

AbstractArtificial intelligence (AI) models such as a convolutional neural network (CNN) are powerful tools for predicting the properties of materials from their microstructural images, etc. It is, however, critically essential to understand how the AI models use images and information to predict the target properties. In this study, we tried to gain insight into the inner workings of two AI models trained to predict bending strength (BS) and thermal conductivity (TC) of silicon nitride ceramics. Focusing on the intermediate feature representation of the microstructural images in the networks, the high‐dimensional data points corresponding to sample images were mapped onto a two‐dimensional plane using t‐distributed stochastic neighbor embedding (t‐SNE). The maps demonstrated that the AI models predicted BS and TC primarily based on the porosity and grain sizes of the samples. The result indicates that t‐SNE is a useful technique for making the basis of models' predictions more understandable and well founded.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3