Mean‐preserving rounding integer‐valued ARMA models

Author:

Weiß Christian H.1ORCID,Zhu Fukang2ORCID

Affiliation:

1. Department of Mathematics and Statistics Helmut Schmidt University Hamburg Germany

2. School of Mathematics Jilin University Changchun China

Abstract

In the past four decades, research on count time series has made significant progress, but research on ‐valued time series is relatively rare. Existing ‐valued models are mainly of autoregressive structure, where the use of the rounding operator is very natural. Because of the discontinuity of the rounding operator, the formulation of the corresponding model identifiability conditions and the computation of parameter estimators need special attention. It is also difficult to derive closed‐form formulae for crucial stochastic properties. We rediscover a stochastic rounding operator, referred to as mean‐preserving rounding, which overcomes the above drawbacks. Then, a novel class of ‐valued ARMA models based on the new operator is proposed, and the existence of stationary solutions of the models is established. Stochastic properties including closed‐form formulae for (conditional) moments, autocorrelation function, and conditional distributions are obtained. The advantages of our novel model class compared to existing ones are demonstrated. In particular, our model construction avoids identifiability issues such that maximum likelihood estimation is possible. A simulation study is provided, and the appealing performance of the new models is shown by several real‐world data sets.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference33 articles.

1. On the Poisson difference distribution inference and applications;Alzaid AA;Bulletin of the Malaysian Mathematical Sciences Society,2010

2. Generalized Poisson difference autoregressive processes

3. Branching processes with immigration and integer‐valued time series;Dion J‐P;Serdica Mathematical Journal,1995

4. DribeM OlssonM SvenssonP.2017. Nordic Europe. InFamine in European History AlfaniG Ó GrádaC(eds.).Cambridge:Cambridge University Press;185–211.

5. Random Iterative Models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3