Estimating a common break point in means for long‐range dependent panel data

Author:

Xi Daiqing1,Fuh Cheng‐Der2,Pang Tianxiao3

Affiliation:

1. School of Statistics and Mathematics Zhongnan University of Economics and Law Wuhan China

2. Graduate Institute of Statistics National Central University Taoyuan County Taiwan

3. School of Mathematical Sciences Zhejiang University Hangzhou China

Abstract

In this article, we study a common break point in means for panel data with cross‐sectional dependence through unobservable common factors, in which the observations are long‐range dependent over time and are heteroscedastic and may have different degrees of dependence across panels. First, we adopt the least squares method without taking the data features into account to estimate the common break point and to see how the data features affect the asymptotic behaviors of the estimator. Then, an iterative least squares estimator of the common break point which accounts for the common factors in the estimation procedure is examined. Our theoretical results reveal that: (1) There is a trade‐off between the overall break magnitude of the panel data and the long‐range dependence for both estimators. (2) The second estimation procedure can eliminate the effects of common factors from the asymptotic behaviors of the estimator successfully, but it cannot improve the rate of convergence of the estimator in most cases. Moreover, Monte Carlo simulations are given to illustrate the theoretical results on finite‐sample performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3