Localization of breathing cracks in stepped rotors using super‐harmonic characteristic deflection shapes based on singular value decomposition in frequency domain

Author:

Lu Z.1ORCID,Dong D.1,Ouyang H.23,Cao S.2,Hua C.1

Affiliation:

1. School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 Sichuan China

2. School of Engineering University of Liverpool Liverpool UK

3. State Key Laboratory of Structural Analysis for Industrial Equipment Dalian University of Technology Dalian 116023 Liaoning, China

Abstract

AbstractAn output‐only multiple‐crack localization method is proposed in this paper to detect and localize breathing cracks in a stepped rotor, which utilizes the crack‐induced local shape distortions in super‐harmonic characteristic deflection shapes (SCDSs). To minimize the noise effects on SCDSs and improve the accuracy of SCDS‐based crack localization, singular value decomposition is adopted to estimate the SCDS as the dominant singular vector of output power spectral density matrix at a super‐harmonic frequency. Then, in order to better reveal shape distortions in the SCDSs, an after‐treatment technique called gapped smoothing method is applied to derive a damage index. Numerical experiments are carried out to investigate the performance of the proposed method based on a two‐disc stepped rotor‐bearing system with breathing cracks established by the finite element method. Results show that the method is effective for single and multiple crack localization in stepped rotors and interference of steps can be excluded. Furthermore, the method is robust to noise. Influences of crack depths and rotating speeds are also investigated, and how to choose the rotating speed for better crack localization is discussed.

Funder

the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3