Neural Semantic Surface Maps

Author:

Morreale Luca1ORCID,Aigerman Noam23ORCID,Kim Vladimir G.3ORCID,Mitra Niloy J.13ORCID

Affiliation:

1. Unversity College London

2. University of Montreal

3. Adobe Research

Abstract

AbstractWe present an automated technique for computing a map between two genus‐zero shapes, which matches semantically corresponding regions to one another. Lack of annotated data prohibits direct inference of 3D semantic priors; instead, current state‐of‐the‐art methods predominantly optimize geometric properties or require varying amounts of manual annotation. To overcome the lack of annotated training data, we distill semantic matches from pre‐trained vision models: our method renders the pair of untextured 3D shapes from multiple viewpoints; the resulting renders are then fed into an off‐the‐shelf image‐matching strategy that leverages a pre‐trained visual model to produce feature points. This yields semantic correspondences, which are projected back to the 3D shapes, producing a raw matching that is inaccurate and inconsistent across different viewpoints. These correspondences are refined and distilled into an inter‐surface map by a dedicated optimization scheme, which promotes bijectivity and continuity of the output map. We illustrate that our approach can generate semantic surface‐to‐surface maps, eliminating manual annotations or any 3D training data requirement. Furthermore, it proves effective in scenarios with high semantic complexity, where objects are non‐isometrically related, as well as in situations where they are nearly isometric.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Reference89 articles.

1. AbdelreheemA. EldesokeyA. OvsjanikovM. WonkaP.: Zero‐shot 3d shape correspondence.arXiv preprint arXiv:2306.03253(2023). 3

2. AmirS. GandelsmanY. BagonS. DekelT.: Deep vit features as dense visual descriptors.arXiv preprint arXiv:2112.05814(2021). 2 3 4 5

3. AsirvathamA. PraunE. HoppeH.: Consistent spherical parameterization. InComputer Graphics and Geometric Modeling (CGGM) 2005 Workshop(2005). 3

4. Lifted bijections for low distortion surface mappings

5. Seamless surface mappings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3