Advances in meta‐analysis: A unifying modelling framework with measurement error correction

Author:

Becker Betsy Jane1ORCID,Zhang Qian2

Affiliation:

1. Synthesis Research Group Roswell Georgia USA

2. Florida State University Tallahassee Florida USA

Abstract

AbstractIn psychological studies, multivariate outcomes measured on the same individuals are often encountered. Effects originating from these outcomes are consequently dependent. Multivariate meta‐analysis examines the relationships of multivariate outcomes by estimating the mean effects and their variance–covariance matrices from series of primary studies. In this paper we discuss a unified modelling framework for multivariate meta‐analysis that also incorporates measurement error corrections. We focus on two types of effect sizes, standardized mean differences (d) and correlations (r), that are common in psychological studies. Using generalized least squares estimation, we outline estimated mean vectors and variance–covariance matrices for d and r that are corrected for measurement error. Given the burgeoning research involving multivariate outcomes, and the largely overlooked ramifications of measurement error, we advocate addressing measurement error while conducting multivariate meta‐analysis to enhance the replicability of psychological research.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3