Milestone Review: Metabolic dynamics of glutamate and GABA mediated neurotransmission — The essential roles of astrocytes

Author:

Andersen Jens V.1ORCID,Schousboe Arne1ORCID

Affiliation:

1. Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark

Abstract

AbstractSince it was first generally accepted that the two amino acids glutamate and GABA act as principal neurotransmitters, several landmark discoveries relating to this function have been uncovered. Synaptic homeostasis of these two transmitters involves several cell types working in close collaboration and is facilitated by specialized cellular processes. Notably, glutamate and GABA are extensively recycled between neurons and astrocytes in a process known as the glutamate/GABA‐glutamine cycle, which is essential to maintain synaptic transmission. The glutamate/GABA‐glutamine cycle is intimately coupled to cellular energy metabolism and relies on the metabolic function of both neurons and astrocytes. Importantly, astrocytes display unique metabolic features allowing extensive metabolite release, hereby providing metabolic support for neurons. Furthermore, astrocytes undergo complex metabolic adaptations in response to injury and pathology, which may greatly affect the glutamate/GABA‐glutamine cycle and synaptic transmission during disease. In this Milestone Review we outline major discoveries in relation to synaptic balancing of glutamate and GABA signaling, including cellular uptake, metabolism, and recycling. We provide a special focus on how astrocyte function and metabolism contribute to sustain neuronal transmission through metabolite transfer. Recent advances on cellular glutamate and GABA homeostasis are reviewed in the context of brain pathology, including glutamate toxicity and neurodegeneration. Finally, we consider how pathological astrocyte metabolism may serve as a potential target of metabolic intervention. Integrating the multitude of fine‐tuned cellular processes supporting neurotransmitter recycling, will aid the next generation of major discoveries on brain glutamate and GABA homeostasis.image

Funder

Hørslev-Fonden

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3