BioEncoder: A metric learning toolkit for comparative organismal biology

Author:

Lürig Moritz D.12ORCID,Di Martino Emanuela34,Porto Arthur15

Affiliation:

1. Florida Museum of Natural History University of Florida Gainesville Florida USA

2. Department of Biology Lund University Lund Sweden

3. Dipartimento di Scienze Biologiche, Geologiche e Ambientali Università di Catania Catania Italy

4. Natural History Museum University of Oslo Oslo Norway

5. Department of Biology University of Florida Gainesville Florida USA

Abstract

AbstractIn the realm of biological image analysis, deep learning (DL) has become a core toolkit, for example for segmentation and classification. However, conventional DL methods are challenged by large biodiversity datasets characterized by unbalanced classes and hard‐to‐distinguish phenotypic differences between them. Here we present BioEncoder, a user‐friendly toolkit for metric learning, which overcomes these challenges by focussing on learning relationships between individual data points rather than on the separability of classes. BioEncoder is released as a Python package, created for ease of use and flexibility across diverse datasets. It features taxon‐agnostic data loaders, custom augmentation options, and simple hyperparameter adjustments through text‐based configuration files. The toolkit's significance lies in its potential to unlock new research avenues in biological image analysis while democratizing access to advanced deep metric learning techniques. BioEncoder focuses on the urgent need for toolkits bridging the gap between complex DL pipelines and practical applications in biological research.

Funder

Dipartimento Ingegneria Civile e Architettura, Università di Catania

H2020 Marie Skłodowska-Curie Actions

Nvidia

Norges Forskningsråd

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3