Determining land subsidence potential using the evidential belief function model: A case study for the Bardaskan Aquifer, Iran

Author:

Eghbali Mehdi1,Azarakhshi Maryam1ORCID,Khalaj Mohammad R.2

Affiliation:

1. Department of Nature Engineering and Medicinal Plants, Faculty of Agriculture University of Torbat Heydarieh Torbat Heydarieh Iran

2. Khorasan Razavi Agricultural and Natural Resources Research and Education Center AREEO Mashhad Iran

Abstract

AbstractIn this study, we employed the evidential belief function model (EBF) to evaluate the potential for land subsidence in the primary aquifer of Bardaskan. Through field visits, we recorded GPS coordinates for 174 land subsidence points. Factors considered in assessing land subsidence potential included well density, groundwater extraction rate, geological characteristics, proximity to faults, vegetation cover, distance from the river, slope, and land use. To develop and validate the model, 70% of the recorded points were randomly selected for training and implementation, while the remaining 30% were reserved for model validation. The number and percentage of land subsidence points in the different classes of the corresponding layers were determined by integrating the training points with influential variables maps such as distance from the river, distance from the fault, land use, and extraction volume. The EBF model rate was calculated for different layer classes. For modeling, all rates of the EBF model in each cell were summated, and the ‎potential of land subsidence was calculated.‎ Finally, the map of land subsidence potential based on the EBF model was determined with GIS. The results showed that most of the subsidence points were located in alluvial sediment of the Holocene period, in areas with high groundwater harvesting, a distance of at least 3000 m from a river, a distance of at least 6000 m from a fault, low‐density rangelands, slopes of at least 0%–2%, and farmlands and gardens. A receiver operating characteristic curve analysis of the EBF model showed that it could accurately predict land subsidence in 87.5% of cases using 30% of the validation data. This suggests that the model can be used for practical applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3