Extent of alteration, paleomagnetic history, and infrared spectral properties of the Tarda ungrouped carbonaceous chondrite

Author:

Bates H. C.1ORCID,Aspin R.2,Fu C. Y.3,Harrison C. S.14,Feaver E.5,Branagan‐Harris E.16,King A. J.1ORCID,Bryson J. F. J.2ORCID,Sridhar S.2ORCID,Nichols C. I. O.2

Affiliation:

1. Planetary Materials Group Natural History Museum London UK

2. Department of Earth Sciences University of Oxford Oxford UK

3. Department of Earth Science & Engineering Imperial College London London UK

4. Department of Earth & Environmental Sciences The University of Manchester Manchester UK

5. Physics & Astronomy Department University College London London UK

6. Atmospheric, Oceanic & Planetary Physics University of Oxford Oxford UK

Abstract

AbstractTarda is an ungrouped, hydrated carbonaceous chondrite (C2‐ung) that was seen to fall in Morocco in 2020. Early studies showed that Tarda chemically resembles another ungrouped chondrite, Tagish Lake (C2‐ung), which has previously been linked to the dark D‐type asteroids. Samples of D‐type asteroids provide an important opportunity to investigate primitive conditions in the outer solar system. We show that Tarda contains few intact chondrules and refractory inclusions and that its composition is dominated by secondary Mg‐rich phyllosilicates (>70 vol%), carbonates, oxides, and Fe‐sulfides that formed during extensive water–rock reactions. Quantitative assessment of first‐order reversal curve (FORC) diagrams shows that Tarda's magnetic mineralogy (i.e., framboidal magnetite) is comparable to that of the CI chondrites and differs notably from that of most CM chondrites. These traits support a common formation process for magnetite in Tarda and the CI chondrites. Furthermore, Tarda's pre‐terrestrial paleomagnetic remanence is similar to that of Tagish Lake and samples returned from asteroid Ryugu, with a very weak paleointensity (<0.6 μT) suggesting that Tarda's parent body accreted more distally than that of the CM chondrites, possibly at a distance of >5.4–8.3 AU. An origin in the cold, outer regions of the solar system is further supported by the presence of distinct, porous clasts enriched in aliphatic‐rich organics that potentially retain a pristine interstellar composition. Together, our observations support a genetic relationship between Tarda and Tagish Lake.

Funder

UK Research and Innovation

Science and Technology Facilities Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3