Understanding global research trends in the control and prevention of infectious diseases for children: Insights from text mining and topic modeling

Author:

Oh Won‐Oak1ORCID,Lee Eunji1ORCID,Heo Yoo‐jin1ORCID,Jung Myung‐Jin1ORCID,Han Jihee1ORCID

Affiliation:

1. College of Nursing, Korea University Seoul South Korea

Abstract

AbstractIntroductionThe emergence of novel infectious diseases has amplified the urgent need for effective prevention strategies, especially ones targeting vulnerable populations such as children. Factors such as the high incidence of both emerging and existing infectious diseases, delays in vaccinations, and routine exposure in communal settings heighten children's susceptibility to infections. Despite this pressing need, a comprehensive exploration of research trends in this domain remains lacking. This study aims to address this gap by employing text mining and modeling techniques to conduct a comprehensive analysis of the existing literature, thereby identifying emerging research trends in infectious disease prevention among children.MethodsA cross‐sectional text mining approach was adopted, focusing on journal articles published between January 1, 2003, and August 31, 2022. These articles, related to infectious disease prevention in children, were sourced from databases such as PubMed, CINAHL, MEDLINE (Ovid), Scopus, and Korean RISS. The data underwent preprocessing using the Natural Language Toolkit (NLTK) in Python, with a semantic network analysis and topic modeling conducted using R software.ResultsThe final dataset comprised 509 journal articles extracted from multiple databases. The study began with a word frequency analysis to pinpoint relevant themes, subsequently visualized through a word cloud. Dominant terms encompassed “vaccination,” “adolescent,” “infant,” “parent,” “family,” “school,” “country,” “household,” “community,” “HIV,” “HPV,” “COVID‐19,” “influenza,” and “diarrhea.” The semantic analysis identified “age” as a key term across infection, control, and intervention discussions. Notably, the relationship between “hand” and “handwashing” was prominent, especially in educational contexts linked with “school” and “absence.” Latent Dirichlet Allocation (LDA) topic modeling further delineated seven topics related to infectious disease prevention for children, encompassing (1) educational programs, (2) vaccination efforts, (3) family‐level responses, (4) care for immunocompromised individuals, (5) country‐specific responses, (6) school‐based strategies, and (7) persistent threats from established infectious diseases.ConclusionThe study emphasizes the indispensable role of personalized interventions tailored for various child demographics, highlighting the pivotal contributions of both parental guidance and school participation.Clinical RelevanceThe study provides insights into the complex public health challenges associated with preventing and managing infectious diseases in children. The insights derived could inform the formulation of evidence‐based public health policies, steering practical interventions and fostering interdisciplinary synergy for holistic prevention strategies.

Funder

National Research Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3