Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia

Author:

Liu Li1,Hu Han2,Wu Junfa1,Koleske Anthony J.3,Chen Hongting2,Wang Nianhong1,Yu Kewei1,Wu Yi1ORCID,Xiao Xiao2,Zhang Qun1ORCID

Affiliation:

1. Department of Rehabilitation Medicine, Huashan Hospital Fudan University Shanghai China

2. Behavioral and Cognitive Neuroscience Center Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan University Shanghai China

3. Departments of Molecular Biophysics and Biochemistry and Neuroscience Yale University New Haven Connecticut USA

Abstract

AbstractBackgroundRepetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear.MethodsMice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect.ResultsWe found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS.ConclusionsIn this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3