Cortical iron accumulation in MAPT‐ and C9orf 72‐associated frontotemporal lobar degeneration

Author:

Giannini Lucia A. A.1ORCID,Bulk Marjolein1,Kenkhuis Boyd2ORCID,Rajicic Ana1,Melhem Shamiram1,Hegeman‐Kleinn Ingrid3,Bossoni Lucia2,Suidgeest Ernst2,Dopper Elise G. P.1,van Swieten John C.1,van der Weerd Louise24,Seelaar Harro1ORCID

Affiliation:

1. Department of Neurology and Alzheimer Center Erasmus MC Erasmus MC University Medical Center Rotterdam Netherlands

2. Department of Radiology Leiden University Medical Center Leiden Netherlands

3. Department of Pathology Leiden University Medical Center Leiden Netherlands

4. Department of Human Genetics Leiden University Medical Center Leiden Netherlands

Abstract

AbstractNeuroinflammation has been implicated in frontotemporal lobar degeneration (FTLD) pathophysiology, including in genetic forms with microtubule‐associated protein tau (MAPT) mutations (FTLD‐MAPT) or chromosome 9 open reading frame 72 (C9orf72) repeat expansions (FTLD‐C9orf72). Iron accumulation as a marker of neuroinflammation has, however, been understudied in genetic FTLD to date. To investigate the occurrence of cortical iron accumulation in FTLD‐MAPT and FTLD‐C9orf72, iron histopathology was performed on the frontal and temporal cortex of 22 cases (11 FTLD‐MAPT and 11 FTLD‐C9orf72). We studied patterns of cortical iron accumulation and its colocalization with the corresponding underlying pathologies (tau and TDP‐43), brain cells (microglia and astrocytes), and myelination. Further, with ultrahigh field ex vivo MRI on a subset (four FTLD‐MAPT and two FTLD‐C9orf72), we examined the sensitivity of T2*‐weighted MRI for iron in FTLD. Histopathology showed that cortical iron accumulation occurs in both FTLD‐MAPT and FTLD‐C9orf72 in frontal and temporal cortices, characterized by a diffuse mid‐cortical iron‐rich band, and by a superficial cortical iron band in some cases. Cortical iron accumulation was associated with the severity of proteinopathy (tau or TDP‐43) and neuronal degeneration, in part with clinical severity, and with the presence of activated microglia, reactive astrocytes and myelin loss. Ultra‐high field T2*‐weighted MRI showed a good correspondence between hypointense changes on MRI and cortical iron observed on histology. We conclude that iron accumulation is a feature of both FTLD‐MAPT and FTLD‐C9orf72 and is associated with pathological severity. Therefore, in vivo iron imaging using T2*‐weighted MRI or quantitative susceptibility mapping may potentially be used as a noninvasive imaging marker to localize pathology in FTLD.

Funder

Alzheimer Nederland

ZonMw

Publisher

Wiley

Subject

Neurology (clinical),Pathology and Forensic Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3