Living with hypoxia: Residence and site fidelity by golden perch (Macquaria ambigua) in habitats affected by methane seeps and chronic hypoxia

Author:

Crook David A.12ORCID,Nielsen Daryl L.3,Brown Paul4,Petrie Rochelle T.5,Dunne Craig6,McPhan Luke M.1,Rees Gavin N.3

Affiliation:

1. Centre for Freshwater Ecosystems La Trobe University Wodonga Victoria Australia

2. NSW Department of Primary Industries Narrandera New South Wales Australia

3. CSIRO Environment, and Gulbali Institute Charles Sturt University Albury New South Wales Australia

4. Fisheries and Wetlands Consulting Portarlington Victoria Australia

5. Department of Natural Resources and Environment Tasmania Prospect Tasmania Australia

6. Forestry Corporation of NSW Batemans Bay New South Wales Australia

Abstract

Abstract We conducted an acoustic telemetry study of native golden perch (Macquaria ambigua) to examine movement behaviour in areas affected by methane seeps and hypoxia in the intermittent Condamine River, Murray‐Darling Basin (MDB), Australia. Fish were collected during periods of no flow and hypoxia (dissolved oxygen [DO] <1 mg/L). Despite these conditions, 38 of 43 fish tagged with acoustic transmitters were detected for >3 months post‐tagging in the study reach and 27 fish were being detected after 14 months. During periods of elevated river flow and relatively high DO, 30 fish moved away from their original tagging locations, with three undertaking movements (>7 km) outside the study reach and not returning. Generalised additive mixed models showed a significant increase in the probability of movement as soon as flow commenced and when water temperatures exceeded 19°C. As flows receded, most fish that had moved exhibited accurate homing behaviour to their original tagging location. The patterns of movement and site fidelity exhibited by golden perch correspond with previous studies of the species in intermittent rivers not affected by methane seeps and severe hypoxia, suggesting that the methane seeps and hypoxia did not inhibit fish movement nor render the affected habitats unsuitable for habitation. Golden perch can survive and remain active in water with much lower DO (<1 mg/L) than previously described for large‐bodied native fishes in the MDB. However, fish condition in the study reach was slightly lower than other regions of the MDB, providing preliminary evidence that fish residing in habitats affected by chronic hypoxia and methane seepage may experience sub‐lethal stress. Our results demonstrate the importance of field‐based data on the behavioural and physiological responses of fish to chronic hypoxia and methane exposure to guide appropriate management responses.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3