7. Assessing Bias in the Estimation of Causal Effects: Rosenbaum Bounds on Matching Estimators and Instrumental Variables Estimation with Imperfect Instruments

Author:

DiPrete Thomas A.1,Gangl Markus2

Affiliation:

1. Duke University

2. Social Science Centre Berlin (WZB)

Abstract

Propensity score matching provides an estimate of the effect of a “treatment” variable on an outcome variable that is largely free of bias arising from an association between treatment status and observable variables. However, matching methods are not robust against “hidden bias” arising from unobserved variables that simultaneously affect assignment to treatment and the outcome variable. One strategy for addressing this problem is the Rosenbaum bounds approach, which allows the analyst to determine how strongly an unmeasured confounding variable must affect selection into treatment in order to undermine the conclusions about causal effects from a matching analysis. Instrumental variables (IV) estimation provides an alternative strategy for the estimation of causal effects, but the method typically reduces the precision of the estimate and has an additional source of uncertainty that derives from the untestable nature of the assumptions of the IV approach. A method of assessing this additional uncertainty is proposed so that the total uncertainty of the IV approach can be comparedwith the Rosenbaum bounds approach to uncertainty using matching methods. Because the approaches rely on different information and different assumptions, they provide complementary information about causal relationships. The approach is illustrated via an analysis of the impact of unemployment insurance on the timing of reemployment, the postunemployment wage, and the probability of relocation, using data from several panels of the Survey of Income and Program Participation (SIPP).

Publisher

SAGE Publications

Subject

Sociology and Political Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3