Extracellular matrix biomechanical roles and adaptation in health and disease

Author:

Franchi Marco1ORCID,Piperigkou Zoi23ORCID,Mastronikolis Nicholas S.4ORCID,Karamanos Nikos23ORCID

Affiliation:

1. Department for Life Quality Studies University of Bologna Rimini Italy

2. Department of Chemistry, Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry University of Patras Greece

3. Foundation for Research and Technology‐Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE‐HT) Patras Greece

4. Department of Otorhinolaryngology‐Head and Neck Surgery School of Medicine, University of Patras Greece

Abstract

Extracellular matrices (ECMs) are dynamic 3D macromolecular networks that exhibit structural characteristics and composition specific to different tissues, serving various biomechanical and regulatory functions. The interactions between ECM macromolecules such as collagen, elastin, glycosaminoglycans (GAGs), proteoglycans (PGs), fibronectin, and laminin, along with matrix effectors and water, contribute to the unique cellular and tissue functional properties during organ development, tissue homoeostasis, remodeling, disease development, and progression. Cells adapt to environmental changes by adjusting the composition and array of ECM components. ECMs, forming the 3D bioscaffolds of our body, provide mechanical support for tissues and organs and respond to the environmental variables influencing growth and final adult body shape in mammals. Different cell types display distinct adaptations to the respective ECM environments. ECMs regulate biological processes by controlling the diffusion of infections and inflammations, sensing and adapting to external stimuli and gravity from the surrounding habitat, and, in the context of cancer, interplaying with and regulating cancer cell invasion and drug resistance. Alterations in the ECM composition in pathological conditions drive adaptive responses of cells and could therefore result in abnormal cell behavior and tissue dysfunction. Understanding the biomechanical functionality, adaptation, and roles of distinct ECMs is essential for research on various pathologies, including cancer progression and multidrug resistance, which is of crucial importance for developing targeted therapies. In this Viewpoint article, we critically present and discuss specific biomechanical functions of ECMs and regulatory adaptation mechanisms in both health and disease, with a particular focus on cancer progression.

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3