Summer heat during spermatogenesis reduces in vitro blastocyst rates and affects sperm quality of next generation bulls

Author:

Vanselow Jens1ORCID,Wesenauer Claudia2,Eggert Anja1,Sharma Arpna1,Becker Frank1

Affiliation:

1. Research Institute for Farm Animal Biology (FBN) Dummerstorf Germany

2. RinderAllianz GmbH Woldegk Germany

Abstract

AbstractBackgroundDue to global warming seasonal heat stress is an increasing problem in temperate zones. Heat stress not only decreases fertility in females, but can also be detrimental to male fertility.ObjectivesWe studied the effects of natural summer heat stress during spermatogenesis in Holstein bulls on semen quality parameters and on fertilization performance in vitro and possible intergenerational transmission of effects on the next male generation.Materials and MethodsSemen samples from young Holstein breeding bulls, referred to as F0 founders during this study, were collected during summer (F0 “summer” semen) and the following winter (F0 “winter” semen). Parameters such as ejaculate volume, sperm density, motility, thermoresistance, and in vitro blastocyst rates from these F0 semen samples were determined. In addition, after generation of offspring by artificial insemination, semen samples from F1 male offspring were collected and tested for the same quality and performance parameters to capture intergenerational effects. F1 bulls were raised together under identical conditions and semen was collected at about 1 year after birth.ResultsThe data showed that in vitro blastocyst rates of F0 “summer” semen samples were lower compared with “winter” semen, whereas blastocyst rates of F1 semen samples did not show significant differences. However, whereas F0 semen samples did not indicate significantly different quality parameters we found that motility of F1 semen samples showed significant differences with higher values when collected from bulls generated with F0 “winter” semen.Discussion and ConclusionFrom our data, we conclude that (i) natural summer heat stress during spermatogenesis can affect in vitro fertility parameters and (ii) the observed effects on sperm motility of F1 semen samples suggest intergenerational paternal transmission.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3