The Probable Mechanism for Silicon Capture by Diatom Algae: Assimilation of Polycarbonic Acids with Diatoms—Is Endocytosis a Key Stage in Building of Siliceous Frustules?

Author:

Annenkov Vadim V.1ORCID,Gordon Richard23,Zelinskiy Stanislav N.1,Danilovtseva Elena N.1

Affiliation:

1. Limnological Institute of Siberian Branch of the Russian Academy of Sciences 3, Ulan‐Bator Str. Irkutsk 664033 Russia

2. Gulf Specimen Marine Laboratory & Aquarium 222 Clark Drive Panacea Florida 32346 USA

3. C.S. Mott Center for Human Growth & Development Department of Obstetrics & Gynecology Wayne State University 275 E. Hancock Detroit Michigan 48201 USA

Abstract

Many organisms including unicellular (diatoms, radiolaria, and chrysophytes), higher plants (rice and horsetail) and animals (sponges) use silica as a main part of skeletons. The bioavailable form of silicon is silicic acid and the mechanism of silicic acid penetration into living cells is still an enigma. Macropinocytosis was assumed as a key stage of the silicon capture by diatoms but assimilation of monomeric silicic acid by this way requires enormous amounts of water to be passed through the cell. We hypothesized that silicon can be captured by diatoms via endocytosis in the form of partially condensed silicic acid (oligosilicates) whose formation on the diatom surface was supposed. Oligosilicates are negatively charged nanoparticles and similar to coils of poly(acrylic acid) (PAA). We have synthesized fluorescent tagged PAA as well as several neutral and positively charged polymers. Cultivation of the diatom Ulnaria ferefusiformis in the presence of these polymers showed that only PAA is able to penetrate into siliceous frustules. The presence of PAA in the frustules was confirmed with chromatography and PAA causes various aberrations of the valve morphology. Growth of U. ferefusiformis and two other diatoms in the presence of tri‐ and tetracarbonic fluorescent tagged acids points to the ability of diatoms to recognize substances that bear four acidic groups and to include them into siliceous frustules. Thus, partial condensation of silicic acid is a plausible first stage of silicon assimilation.

Funder

Russian Academy of Sciences

Russian Foundation for Basic Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3