In vitro assessment of antimicrobial potential of low molecular weight chitosan and its ability to mechanically reinforce and control endogenous proteolytic activity of dentine

Author:

Pascale Christina1,Geaman Jay1,Mendoza Christine1,Gao Feng1ORCID,Kaminski Amber2,Cuevas‐Nunez Maria1,Darvishan Behnam1,Mitchell John C.13ORCID,Carrilho Marcela R.1ORCID,Sigar Ira2

Affiliation:

1. College of Dental Medicine Illinois Midwestern University Downers Grove Illinois USA

2. College of Graduate Studies Midwestern University Downers Grove Illinois USA

3. College of Dental Medicine Arizona Midwestern University Downers Grove Illinois USA

Abstract

AbstractAimsChitosan‐based biomaterials exhibit several properties of biological interest for endodontic treatment. Herein, a low molecular weight chitosan (CH) solution was tested for its antimicrobial activity against Enterococcus faecalis (E. faecalis) and effects on dentine structure.MethodologyThe root canal of 27 extracted uniradicular teeth were biomechanically prepared, inoculated with a suspension of E. faecalis and randomly assigned to be irrigated with either 5.25% sodium hypochlorite (NaClO), 0.2% CH or sterile ultrapure water (W). Bacteriologic samples were collected from root canals and quantified for of E. faecalis colony‐forming units (CFUs). The effectiveness of CH over E. faecalis biofilms was further measured using the MBEC Assay®. Additionally, dentine beams and dentine powder were obtained, respectively, from crowns and roots of 20 extracted third molars. Dentine samples were treated or not with 17% EDTA and immersed in either CH or W for 1 min. The effects of CH on dentine structure were evaluated by assessment of the modulus of elasticity, endogenous proteolytic activity and biochemical modifications.ResultsThe number of E. faecalis CFUs was significantly lower for samples irrigated with CH and NaClO. No significant differences were found between CH and NaClO treatments. Higher modulus of elasticity and lower proteolytic activity were reported for dentine CH‐treated specimens. Chemical interaction between CH and dentine was observed for samples treated or not with EDTA.ConclusionsPresent findings suggest that CH could be used as an irrigant during root canal treatment with the triple benefit of reducing bacterial activity, mechanically reinforcing dentine and inhibiting dentine proteolytic activity.

Publisher

Wiley

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3