A novel stroke rehabilitation strategy and underlying stress granule regulations through inhibition of NLRP3 inflammasome activation

Author:

Wang Qingzhu1ORCID,Kohls Wesley2ORCID,Wills Melissa2,Li Fengwu1ORCID,Pang Qi23ORCID,Geng Xiaokun124ORCID,Ding Yuchuan2ORCID

Affiliation:

1. China‐America Institute of Neuroscience Beijing Luhe Hospital, Capital Medical University Beijing China

2. Department of Neurosurgery Wayne State University School of Medicine Detroit Michigan USA

3. Department of Neurosurgery, Shandong Provincial Hospital Shandong University Jinan China

4. Department of Neurology, Beijing Luhe Hospital Capital Medical University Beijing China

Abstract

AbstractObjectiveDynamic changes in ischemic pathology after stroke suggested a “critical window” of enhanced neuroplasticity immediately after stroke onset. Although physical exercise has long been considered a promising strategy of stroke rehabilitation, very early physical exercise may exacerbate brain injury. Since remote ischemic conditioning (RIC) promotes neuroprotection and neuroplasticity, the present study combined RIC with sequential exercise to establish a new rehabilitation strategy for a better rehabilitative outcome.MethodsA total of 120 adult male Sprague‐Dawley rats were used and divided into five groups: (1) sham, (2) stroke, (3) stroke with exercise, (4) stroke with RIC, and (5) stroke with RIC followed by exercise. Brain damage was evaluated by infarct volume, neurological deficit, cell death, and lactate dehydrogenase (LDH) activity. Long‐term functional outcomes were determined by grid walk tests, rotarod tests, beam balance tests, forelimb placing tests, and the Morris water maze. Neuroplasticity was evaluated through measurements of both mRNA and protein levels of synaptogenesis (synaptophysin [SYN], post‐synaptic density protein‐95 [PSD‐95], and brain‐derived neurotrophic factor [BDNF]) and angiogenesis (vascular endothelial growth factor [VEGF], angiopoietin‐1 [Ang‐1], and angiopoietin‐2 [Ang‐2]). Inflammasome activation was measured by concentrations of interleukin‐18 (IL‐18) and IL‐1β detected by enzyme‐linked immunosorbent assay (ELISA) kits, mRNA expressions of NLR pyrin domain containing 3 (NLRP3), apoptosis‐associated speck‐like protein containing a C‐terminal caspase recruitment domain (ASC), IL‐18 and IL‐1β, and protein quantities of NLRP3, ASC, cleaved‐caspase‐1, gasdermin D‐N (GSDMD‐N), and IL‐18 and IL‐1β. Stress granules (SGs), including GTPase‐activating protein‐binding protein 1 (G3BP1), T cell‐restricted intracellular antigen‐1 (TIA1), and DEAD‐box RNA helicase 3X (DDX3X) were evaluated at mRNA and protein levels. The interactions between DDX3X with NLRP3 or G3BP1 were determined by immunofluorescence and co‐immunoprecipitation.ResultsEarly RIC decreased infarct volumes, neurological deficits, cell death, and LDH activity at post‐stroke Day 3 (p < 0.05). All treatment groups showed significant improvement in functional outcomes, including sensory, motor, and cognitive functions. RIC and exercise, as compared to RIC or physical exercise alone, had improved functional outcomes after stroke (p < 0.05), as well as synaptogenesis and angiogenesis (p < 0.05). RIC significantly reduced mRNA and protein expressions of NLRP3 (p < 0.05). SGs formation peaked at 0 h after ischemia, then progressively decreased until 24 h postreperfusion, which was reversed by RIC (p < 0.05). The assembly of SGs consumed DDX3X and then inhibited NLRP3 inflammasome activation.ConclusionsRIC followed by exercise induced a better rehabilitation in ischemic rats, while early RIC alleviated ischemia‐reperfusion injury via stress‐granule‐mediated inhibition of NLRP3 inflammasome.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3