Convergent and divergent evolution of microRNA‐mediated regulation in metazoans

Author:

Wang Yirong1,Tang Xiaolu2,Lu Jian2ORCID

Affiliation:

1. Bioinformatics Center, College of Biology Hunan University Changsha 410082 China

2. State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences Peking University Beijing 100871 China

Abstract

ABSTRACTThe evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA‐mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the ‘independent origin’ hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage‐specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth–death evolutionary pattern aligning with the ‘out‐of‐the‐testis’ and ‘transcriptional control’ hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA‐mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference180 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3