A Controlled Variable Study of the Biomechanical Properties of the Proximal Femur before and after Cancellous Bone Removal

Author:

Wang Haicheng1,Ding Kai2,Zhang Yifan2ORCID,Ren Chuan2,Huo Haoyu2,Zhu Yanbin2,Zhang Qi2,Chen Wei234ORCID

Affiliation:

1. CangZhou Hospital of Integrated TCM‐WM in Hebei Cangzhou City China

2. Department of Orthopedic Surgery Hebei Medical University Third Hospital Shijiazhuang China

3. NHC Key Laboratory of Intelligent Orthopedic Equipment Hebei Medical University Third Hospital Shijiazhuang China

4. Key Laboratory of Biomechanics of Hebei Province Shijiazhuang China

Abstract

ObjectiveThe biomechanical characteristics of proximal femoral trabeculae are closely related to the occurrence and treatment of proximal femoral fractures. Therefore, it is of great significance to study its biomechanical effects of cancellous bone in the proximal femur. This study examines the biomechanical effects of the cancellous bone in the proximal femur using a controlled variable method, which provide a foundation for further research into the mechanical properties of the proximal femur.MethodsSeventeen proximal femoral specimens were selected to scan by quantitative computed tomography (QCT), and the gray values of nine regions were measure to evaluated bone mineral density (BMD) using Mimics software. Then, an intact femur was fixed simulating unilateral standing position. Vertical compression experiments were then performed again after removing cancellous bone in the femoral head, femoral neck, and intertrochanteric region, and data were recorded. According to the controlled variable method, the femoral head, femoral neck, and intertrochanteric trabeculae were sequentially removed based on the axial loading of the intact femur, and the displacement and strain changes of the femur samples under axial loading were recorded. Gom software was used to measure and record displacement and strain maps of the femoral surface.ResultsThere was a statistically significant difference in anteroposterior displacement of cancellous bone destruction in the proximal femur (p < 0.001). Proximal femoral bone mass explained 77.5% of the strength variation, in addition proximal femoral strength was mainly affected by bone mass at the level of the upper outer, lower inner, lower greater trochanter, and lesser trochanter of the femoral head. The normal stress conduction of the proximal femur was destroyed after removing cancellous bone, the stress was concentrated in the femoral head and lateral femoral neck, and the femoral head showed a tendency to subside after destroying cancellous bone.ConclusionThe trabecular removal significantly altered the strain distribution and biomechanical strength of the proximal femur, demonstrating an important role in supporting and transforming bending moment under the vertical load. In addition, the strength of the proximal femur mainly depends on the bone density of the femoral head and intertrochanteric region.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3