Temperature sensitivity of organic carbon decomposition in lake sediments is mediated by chemodiversity

Author:

Wen Shuailong1ORCID,Hu Ang1,Jiang Shuyu12ORCID,Han Lei13,Jang Kyoung‐Soon4,Tanentzap Andrew J.5ORCID,Zhong Jicheng1,Wang Jianjun1ORCID

Affiliation:

1. Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Nanjing China

2. College of Life Sciences Nanjing Normal University Nanjing China

3. College of Resources and Environment Hunan Agricultural University Changsha China

4. Bio‐Chemical Analysis Team Korea Basic Science Institute Cheongju Republic of Korea

5. Department of Plant Sciences University of Cambridge Cambridge UK

Abstract

AbstractOrganic carbon decomposition in lake sediments contributes substantially to the global carbon cycle and is strongly affected by temperature. However, the magnitude of temperature sensitivity (Q10) of decomposition and the underlying factors remain unclear at the continental scale. Carbon quality temperature (CQT) hypothesis asserts that less reactive and more recalcitrant molecules tend to have higher temperature sensitivities, but its support is challenged by complex composition of organic matter and environmental constraints. Here, we quantified Q10 of the sediments across 50 freshwater ecosystems along a 3500 km north–south transect, and characterized the quality of sediment dissolved organic carbon with chemodiversity reflected in molecular richness, functional traits (i.e., molecular weight, bioavailability, etc.) and composition. We further included classic environmental variables, such as climatic, physicochemical and microbial factors, to explore how Q10 is constrained by these factors or carbon quality. We found that Q10 varied greatly across lakes, with the mean value of 1.78 ± 0.62, but showed nonsignificant latitudinal pattern. Q10 was primarily predicted by chemodiversity and showed an increasing trend with the biochemical recalcitrance indicated by traits such as aromaticity and standard Gibb's Free Energy at both molecular and compositional levels. This suggests that carbon quality is the crucial determinant of Q10 in lakes, supporting the CQT hypothesis. Moreover, Q10 decreased linearly with the increase of molecular richness, implying that the resistance of decomposition to warming is associated with higher molecular diversity. Compared with the structural equation model containing only environmental variables, inclusion of chemodiversity increased 32.8% of the explained variation in Q10, and chemodiversity was the only driver showing direct effects. Collectively, this study illustrates the importance of chemodiversity in shaping the pattern of Q10, and has significant implications for accurately predicting the carbon turnover in lake ecosystems in the context of global warming.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3