Genome‐wide diversity evaluation and core germplasm extraction in ex situ conservation: A case of golden Camellia tunghinensis

Author:

Zhu Xianliang1ORCID,Zou Rong1,Qin Huizhen1,Chai Shengfeng1,Tang Jianmin1,Li Yingying2,Wei Xiao1

Affiliation:

1. Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences Guilin China

2. Institute of Forestry Economic Science, Guangdong Academy of Forestry Guangzhou China

Abstract

AbstractWhether ex situ populations constructed in the limited nursery resources of botanical gardens can preserve enough genetic diversity of endangered plants in the wild remains uncertain. Here, a case study was conducted with Camellia tunghinensis, which is one of the species with the lowest natural distribution area in the sect. Chrysantha (golden camellia) of the family Theaceae. We investigated the genetic diversity and population structure of 229 samples from wild and ex situ populations using genotyping by sequencing (GBS). Core germplasm was constructed from these samples. The results showed that wild C. tunghinensis exhibited high genetic diversity, with observed heterozygosity of 0.257–0.293 and expected heterozygosity of 0.247–0.262. Compared with wild populations, the genetic diversity of ex situ populations established by transplanting wild seedlings was close to or even higher. However, the genetic diversity of those established by seed or cuttings of a few superior trees was lower. The Admixture analysis revealed that the structure of the ex situ populations derived from seeds and cuttings was relatively simple compared with the ex situ populations derived from transplanted wild seedlings and wild populations. These results suggested that direct transplanting of wild seedlings was more conducive to preserving the genetic diversity of endangered plants in the wild. In addition, wild populations demonstrated a small differentiation (mean FST = 0.044) among themselves, possibly due to long‐term and frequent gene flow between the wild populations. In contrast, moderate differentiation (mean FST > 0.05) was detected among ex situ populations and between ex situ and wild populations. This may be the combined result of the absence of gene flow pathways and strong selection pressure in various ex situ environments. Finally, 77 core germplasms were extracted from 229, likely representing the genetic diversity of C. tunghinensis. This study provides future strategies for the ex situ conservation and management of the golden camellia species and other rare and endangered plants.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3