Arsenic trioxide induces ferroptosis in neuroblastoma by mediating GPX4 transcriptional inhibition

Author:

Su Mingwei1ORCID,Liu Xiaoshan1ORCID,Ma Yuhan1ORCID,Peng Xiaomin1ORCID,Xiong Xilin1ORCID,Weng Wenjun1ORCID,Huang Ke1ORCID,Li Yang1ORCID

Affiliation:

1. Pediatric Hematology/Oncology, Children's Medical Center, Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou China

Abstract

AbstractNeuroblastoma (NB), the most common extracranial solid tumor in childhood, significantly contributes to cancer‐related mortality, presenting a dearth of efficacious treatment strategies. Previously, our studies have substantiated the potent cytotoxicity of arsenic trioxide (ATO) against NB cells, however, the specific underlying mechanism remains elusive. Here, we first identified ATO as a novel GPX4 inhibitor, which could trigger the ferroptosis in NB cells. In vitro, ATO significantly inhibited the proliferation and migration ability of NB cells SK‐N‐AS and SH‐SY5Y, and induced ferroptosis. Furthermore, the iron chelator deferoxamine reversed ATO‐mediated intracellular reactive oxygen species accumulation and hindered the generation of the lipid peroxidation product malondialdehyde. Conversely, ferric ammonium citrate notably intensified its cytotoxic effects, especially on retinoic acid (RA)‐resistant SK‐N‐AS cells. Subsequently, the quantitative real‐time polymerase chain reaction results showed ATO significantly inhibited the transcription of GPX4 in NB cells. Remarkably, immunoblotting analysis revealed that MG132 exhibited a notable effect on elevating GPX4 levels in NB cells. Nevertheless, pretreatment with MG132 failed to reverse the ATO‐mediated decrease in GPX4 levels. These findings suggested that ATO reduced the GPX4 expression level in NB cells by mediating GPX4 transcriptional repression rather than facilitating ubiquitinated degradation. In conclusion, our research has successfully indicated that ATO could induce ferroptosis and initiate lipid peroxidation by regulating the transcriptional repression of GPX4, and ATO holds promise as a potential anti‐tumor agent in NB, specifically for patients with RA‐resistant HR‐NB.

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3