A comprehensive AI‐driven analysis of large‐scale omic datasets reveals novel dual‐purpose targets for the treatment of cancer and aging

Author:

Pun Frank W.1,Leung Geoffrey Ho Duen1,Leung Hoi Wing1,Rice Jared2,Schmauck‐Medina Tomas2,Lautrup Sofie2,Long Xi1,Liu Bonnie Hei Man1,Wong Chun Wai1,Ozerov Ivan V.1,Aliper Alex3,Ren Feng4,Rosenberg Ari J.5,Agrawal Nishant6,Izumchenko Evgeny5,Fang Evandro F.27,Zhavoronkov Alex138ORCID

Affiliation:

1. Insilico Medicine Hong Kong Ltd. Hong Kong China

2. Department of Clinical Molecular Biology University of Oslo and Akershus University Hospital Lørenskog Norway

3. Insilico Medicine AI Ltd. Masdar City United Arab Emirates

4. Insilico Medicine Shanghai Ltd. Shanghai China

5. Department of Medicine, Section of Hematology and Oncology University of Chicago Chicago Illinois USA

6. Department of Surgery University of Chicago Chicago Illinois USA

7. The Norwegian Centre On Healthy Ageing (NO‐Age) Oslo Norway

8. Buck Institute for Research on Aging Novato California USA

Abstract

AbstractAs aging and tumorigenesis are tightly interconnected biological processes, targeting their common underlying driving pathways may induce dual‐purpose anti‐aging and anti‐cancer effects. Our transcriptomic analyses of 16,740 healthy samples demonstrated tissue‐specific age‐associated gene expression, with most tumor suppressor genes downregulated during aging. Furthermore, a large‐scale pan‐cancer analysis of 11 solid tumor types (11,303 cases and 4431 control samples) revealed that many cellular processes, such as protein localization, DNA replication, DNA repair, cell cycle, and RNA metabolism, were upregulated in cancer but downregulated in healthy aging tissues, whereas pathways regulating cellular senescence were upregulated in both aging and cancer. Common cancer targets were identified by the AI‐driven target discovery platform—PandaOmics. Age‐associated cancer targets were selected and further classified into four groups based on their reported roles in lifespan. Among the 51 identified age‐associated cancer targets with anti‐aging experimental evidence, 22 were proposed as dual‐purpose targets for anti‐aging and anti‐cancer treatment with the same therapeutic direction. Among age‐associated cancer targets without known lifespan‐regulating activity, 23 genes were selected based on predicted dual‐purpose properties. Knockdown of histone demethylase KDM1A, one of these unexplored candidates, significantly extended lifespan in Caenorhabditis elegans. Given KDM1A's anti‐cancer activities reported in both preclinical and clinical studies, our findings propose KDM1A as a promising dual‐purpose target. This is the first study utilizing an innovative AI‐driven approach to identify dual‐purpose target candidates for anti‐aging and anti‐cancer treatment, supporting the value of AI‐assisted target identification for drug discovery.

Publisher

Wiley

Subject

Cell Biology,Aging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging AI to identify dual-purpose aging and disease targets;Expert Opinion on Therapeutic Targets;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3