A quantitative trait locus conferring flood tolerance to deepwater rice regulates the formation of two distinct types of aquatic adventitious roots

Author:

Lin Chen12ORCID,Ogorek Lucas León Peralta3ORCID,Liu Dan2ORCID,Pedersen Ole34ORCID,Sauter Margret2ORCID

Affiliation:

1. Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China

2. Plant Developmental Biology and Plant Physiology University of Kiel Am Botanischen Garten 5 24118 Kiel Germany

3. Freshwater Biological Laboratory, Department of Biology University of Copenhagen Universitetsparken 4, 3rd floor 2100 Copenhagen Denmark

4. School of Agriculture and Environment The University of Western Australia Crawley WA 6009 Australia

Abstract

Summary A key trait conferring flood tolerance is the ability to grow adventitious roots as a response to submergence. The genetic traits of deepwater rice determining the development and characteristics of aquatic adventitious roots (AAR) had not been evaluated. We used near‐isogenic lines introgressed to test the hypothesis that the impressive shoot elongation ability of deepwater rice linked to quantitative trait loci 1 and 12 also promote the development of AAR. The deepwater rice genotype NIL‐12 possessed expanded regions at the stem nodes where numerous AAR developed as a response to submergence. Two types (AR1 and AR2) of roots with distinct timing of emergence and large differences in morphological and anatomical traits formed within 3 (AR1) to 7 (AR2) d of submergence. The mechanical impedance provided by the leaf sheath caused AR2 to emerge later promoting thicker roots, higher elongation capacity and higher desiccation tolerance. Upregulation of key genes suggests a joint contribution in activating the meristem in AAR enhancing the development of these in response to submergence. The morphological and anatomical traits suggested that AR2 is better adapted to long‐term flooding than AR1. We therefore propose that AR2 in deepwater rice functions as an evolutionary defence strategy to tackle periodic submergence.

Funder

Danmarks Frie Forskningsfond

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3