Host–pathogen interactions under pressure: A review and meta‐analysis of stress‐mediated effects on disease dynamics

Author:

Vicente‐Santos Amanda1ORCID,Willink Beatriz234ORCID,Nowak Kacy5,Civitello David J.16ORCID,Gillespie Thomas R.157ORCID

Affiliation:

1. Population Biology, Ecology, and Evolution Program Emory University Atlanta Georgia USA

2. Department of Zoology Stockholm University Stockholm Sweden

3. Department of Biological Sciences National University of Singapore Singapore Singapore

4. School of Biology University of Costa Rica San José Costa Rica

5. Department of Environmental Health, Rollins School of Public Health Emory University Atlanta Georgia USA

6. Department of Biology Emory University Atlanta Georgia USA

7. Department of Environmental Sciences Emory University Atlanta Georgia USA

Abstract

AbstractHuman activities have increased the intensity and frequency of natural stressors and created novel stressors, altering host–pathogen interactions and changing the risk of emerging infectious diseases. Despite the ubiquity of such anthropogenic impacts, predicting the directionality of outcomes has proven challenging. Here, we conduct a review and meta‐analysis to determine the primary mechanisms through which stressors affect host–pathogen interactions and to evaluate the impacts stress has on host fitness (survival and fecundity) and pathogen infectivity (prevalence and intensity). We assessed 891 effect sizes from 71 host species (representing seven taxonomic groups) and 78 parasite taxa from 98 studies. We found that infected and uninfected hosts had similar sensitivity to stressors and that responses varied according to stressor type. Specifically, limited resources compromised host fecundity and decreased pathogen intensity, while abiotic environmental stressors (e.g., temperature and salinity) decreased host survivorship and increased pathogen intensity, and pollution increased mortality but decreased pathogen prevalence. We then used our meta‐analysis results to develop susceptible–infected theoretical models to illustrate scenarios where infection rates are expected to increase or decrease in response to resource limitations or environmental stress gradients. Our results carry implications for conservation and disease emergence and reveal areas for future work.

Funder

Emory University

Fulbright Association

National Institute of Allergy and Infectious Diseases

Division of Integrative Organismal Systems

Vetenskapsrådet

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3