Flow intermittency affects the nutritional quality of phototrophic biofilms and their capacity to support secondary production

Author:

Courcoul Camille1ORCID,Boulêtreau Stéphanie1ORCID,Bec Alexandre2,Danger Michael34ORCID,Felten Vincent34ORCID,Pradalier Cédric5,Roche‐Bril Mathilde3,Leflaive Joséphine1ORCID

Affiliation:

1. Laboratoire Écologie Fonctionnelle et Environnement Université de Toulouse, CNRS, INP, Université Toulouse 3 – Paul Sabatier (UPS) Toulouse France

2. Université Clermont Auvergne, CNRS, LMGE Clermont‐Ferrand France

3. Université de Lorraine, CNRS, LIEC Metz France

4. LTER‐ “Zone Atelier Moselle” Metz France

5. GeorgiaTech Lorraine‐ International Research Lab Georgia Tech – CNRS IRL 2958 Metz France

Abstract

Abstract In streams, phototrophic biofilms are considered to be a good‐quality resource for consumers and are essential to support secondary production. However, with the increasing occurrence of flow intermittency as a consequence of global climate change, limited information exists regarding the impact of drying and rewetting events on biofilm nutritional quality indicators and their consequences for consumers. This study aims at understanding how river intermittency affects the nutritional quality of phototrophic biofilms. Specifically, we examine the effects of drying and rewetting events on their capacity to support secondary production. Our hypothesis was that the capacity of biofilms to support secondary production relies on their nutritional quality: biofilms characterised by higher contents of long‐chain fatty acids, nitrogen and phosphorus are expected to provide a better‐quality resource for consumers. We also hypothesised that the nutritional quality of biofilms undergoes changes over time during drying events, and that these changes are influenced by their initial algal composition. This is because the algal composition within biofilms may shift in response to drying events, subsequently impacting the nutritional quality of the biofilms. We grew four phototrophic biofilms in flowing water, each with a different nutritional quality, and then exposed them to a short (3 days) or a long dry period (14 days). Biofilms were sampled 3 days and 18 days after rewetting (post‐disturbance and post‐recovery) to assess alterations in nutritional indicators relative to their pre‐disturbance state through pigment, fatty acid and stoichiometric analyses. We fed these biofilms to Gammarids (Gammarus fossarum) for 29 days and measured individual growth, feeding rate and locomotor activity. We also calculated a secondary production index to assess the biofilms' capacity to support higher trophic levels. Our findings revealed that the nutritional quality of biofilms was significantly reduced during the post‐disturbance phase. The duration of the dry period had minimal effect on this decline. Subsequently, during the recovery phase, nutritional quality indicators improved for biofilms initially dominated by cyanobacteria, while they either remained unchanged or decreased for biofilms initially dominated by diatoms, in comparison to the pre‐disturbance state. As a result, biofilms that initially exhibited a high nutritional quality were disrupted by the dry period, depending on the duration. However, the overall effects of dry period on gammarid's response and on secondary production were less pronounced, which is likely to have resulted from changes in the quantity of available resources. Our study demonstrates that a disturbance can modify the expected and effective qualities of biofilms. It highlights that biochemical parameters cannot reliably predict biofilm capacity to support secondary production. Biofilm history of disturbance, among other parameters, must be taken into account.

Publisher

Wiley

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3