Deep Learning‐Based Blood Abnormalities Detection as a Tool for VEXAS Syndrome Screening

Author:

De Almeida Braga Cédric1,Bauvais Maxence2,Sujobert Pierre3,Heiblig Maël4ORCID,Jullien Maxime5ORCID,Le Calvez Baptiste5ORCID,Richard Camille2,Le Roc'h Valentin2,Rault Emmanuelle6,Hérault Olivier6,Peterlin Pierre7,Garnier Alice7,Chevallier Patrice57ORCID,Bouzy Simon2,Le Bris Yannick23ORCID,Néel Antoine8,Graveleau Julie9,Kosmider Olivier10,Paul‐Gilloteaux Perrine11,Normand Nicolas1,Eveillard Marion25ORCID

Affiliation:

1. Nantes Université, École Centrale Nantes Nantes France

2. Hematology Biology Nantes University Hospital Nantes France

3. Hematology Biology Hospices Civils de Lyon, Hôpital Lyon Sud Pierre Bénite France

4. Hematology Clinic Hospices Civils de Lyon, Hôpital Lyon Sud Pierre Bénite France

5. CRCI2NA, INSERM U1307, CNRS, Nantes Université Nantes France

6. Hematology Biology Tours University Hospital Tours France

7. Hematology Clinic Nantes University Hospital Nantes France

8. Internal Medicine Nantes University Hospital Nantes France

9. Saint Nazaire General Hospital Saint Nazaire France

10. Hematology Biology Hôpital Cochin, Assistance Publique‐Hôpitaux de Paris Paris France

11. Nantes Université, CHU Nantes, CNRS, Inserm, BioCore Nantes France

Abstract

ABSTRACTIntroductionVEXAS is a syndrome described in 2020, caused by mutations of the UBA1 gene, and displaying a large pleomorphic array of clinical and hematological features. Nevertheless, these criteria lack significance to discriminate VEXAS from other inflammatory conditions at the screening step. This work hence first focused on singling out dysplastic features indicative of the syndrome among peripheral blood (PB) polymorphonuclears (PMN). A deep learning algorithm is then proposed for automatic detection of these features.MethodsA multicentric dataset, comprising 9514 annotated PMN images was gathered, including UBA1 mutated VEXAS (n = 25), UBA1 wildtype myelodysplastic (n = 14), and UBA1 wildtype cytopenic patients (n = 25). Statistical analysis on a subset of patients was performed to screen for significant abnormalities. Detection of these features on PB was then automated with a convolutional neural network (CNN) for multilabel classification.ResultsSignificant differences were observed in the proportions of PMNs with pseudo‐Pelger, nuclear spikes, vacuoles, and hypogranularity between patients with VEXAS and both cytopenic and myelodysplastic controls.Automatic detection of these abnormalities yielded AUCs in the range [0.85–0.97] and a F1‐score of 0.70 on the test set. A VEXAS screening score was proposed, leveraging the model outputs and predicting the UBA1 mutational status with 0.82 sensitivity and 0.71 specificity on the test patients.ConclusionThis study suggests that computer‐assisted analysis of PB smears, focusing on suspected VEXAS cases, can provide valuable insights for determining which patients should undergo molecular testing. The presented deep learning approach can help hematologists direct their suspicions before initiating further analyses.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3