Diurnal expression of Dgat2 induced by time‐restricted feeding maintains cardiac health in the Drosophila model of circadian disruption

Author:

Guo Yiming1ORCID,Abou Daya Farah1,Le Hiep Dinh2,Panda Satchidananda2,Melkani Girish C.1ORCID

Affiliation:

1. Department of Pathology, Division of Molecular and Cellular Pathology Heersink School of Medicine, University of Alabama at Birmingham Birmingham Alabama USA

2. Regulatory Biology Laboratory Salk Institute for Biological Studies La Jolla California USA

Abstract

AbstractCircadian disruption is associated with an increased risk of cardiometabolic disorders and cardiac diseases. Time‐restricted feeding/eating (TRF/TRE), restricting food intake within a consistent window of the day, has shown improvements in heart function from flies and mice to humans. However, whether and how TRF still conveys cardiac benefits in the context of circadian disruption remains unclear. Here, we demonstrate that TRF sustains cardiac performance, myofibrillar organization, and regulates cardiac lipid accumulation in Drosophila when the circadian rhythm is disrupted by constant light. TRF induces oscillations in the expression of genes associated with triglyceride metabolism. In particular, TRF induces diurnal expression of diacylglycerol O‐acyltransferase 2 (Dgat2), peaking during the feeding period. Heart‐specific manipulation of Dgat2 modulates cardiac function and lipid droplet accumulation. Strikingly, heart‐specific overexpression of human Dgat2 at ZT 0–10 significantly improves cardiac performance in flies exposed to constant light. We have demonstrated that TRF effectively attenuates cardiac decline induced by circadian disruption. Moreover, our data suggests that diurnal expression of Dgat2 induced by TRF is beneficial for heart health under circadian disruption. Overall, our findings have underscored the relevance of TRF in preserving heart health under circadian disruptions and provided potential targets, such as Dgat2, and strategies for therapeutic interventions in mitigating cardiac aging, metabolic disorders, and cardiac diseases in humans.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3