Influence of Surface Structure, Pigmentation and Particulate Matter on Plant Reflectance and Fluorescence

Author:

Cuba Nahuel I.1,Torres Rocio12ORCID,San Román Enrique12ORCID,Lagorio M. Gabriela12ORCID

Affiliation:

1. Facultad de Ciencias Exactas y Naturales CONICET Universidad de Buenos Aires INQUIMAE Buenos Aires Argentina

2. Facultad de Ciencias Exactas y Naturales Dpto. de Química Inorgánica Analítica y Química Física Universidad de Buenos Aires Buenos Aires Argentina

Abstract

AbstractOptical properties of plant leaves are relevant to evaluate their physiological state and stress effect. The main objective of this work was to study how variegation, pigment composition or reflective features modifies leaves' photophysical behavior. For this purpose, green leaves (Ficus benjamina), purple leaves (Tradescantia pallida), green leaves covered by white trichomes (Cineraria maritima) and variegated leaves (Codiaeum aucubifolium) were analyzed. Firstly, foliar surface morphology was evaluated by scanning electron microscopy. UV‐vis and near‐IR reflectance and transmittance spectra were obtained to calculate absorption (k) and scattering (s) coefficients. The theoretical approaches of Pile of Plates and Kubelka–Munk's theory resulted still valid for nonstandard leaves with differing surface conditions. However, frequently used spectral indices were not reliable for predicting water content, when leaves differed from conventional ones. The proportionality between the absorption factor and chromophore/pigment concentration was also lost for hairy leaves. A simplified model to describe these facts was presented here. Fluorescence spectra were recorded and corrected, due to light re‐absorption. Water‐optical parameter connection and pigment‐optical parameter connection were thoroughly discussed. Leaf surface morphology and pigmentation have not only influenced the optical features of leaves but also played a role in the effect that particulate matter could cause on leaf photosynthesis.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Universidad de Buenos Aires

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3