Application of a novel deep learning–based 3D videography workflow to bat flight

Author:

Håkansson Jonas1ORCID,Quinn Brooke L.2,Shultz Abigail L.1,Swartz Sharon M.23,Corcoran Aaron J.1

Affiliation:

1. Department of Biology University of Colorado Colorado Springs Colorado Springs Colorado USA

2. Department of Ecology, Evolution, and Organismal Biology Brown University Providence Rhode Island USA

3. School of Engineering Brown University Providence Rhode Island USA

Abstract

AbstractStudying the detailed biomechanics of flying animals requires accurate three‐dimensional coordinates for key anatomical landmarks. Traditionally, this relies on manually digitizing animal videos, a labor‐intensive task that scales poorly with increasing framerates and numbers of cameras. Here, we present a workflow that combines deep learning–powered automatic digitization with filtering and correction of mislabeled points using quality metrics from deep learning and 3D reconstruction. We tested our workflow using a particularly challenging scenario: bat flight. First, we documented four bats flying steadily in a 2 m3 wind tunnel test section. Wing kinematic parameters resulting from manually digitizing bats with markers applied to anatomical landmarks were not significantly different from those resulting from applying our workflow to the same bats without markers for five out of six parameters. Second, we compared coordinates from manual digitization against those yielded via our workflow for bats flying freely in a 344 m3 enclosure. Average distance between coordinates from our workflow and those from manual digitization was less than a millimeter larger than the average human‐to‐human coordinate distance. The improved efficiency of our workflow has the potential to increase the scalability of studies on animal flight biomechanics.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3