Affiliation:
1. Department of Anatomy and Cell Biology University of South Carolina Columbia South Carolina USA
2. Neural and Behavioral Science Department Pennsylvania State University College of Medicine Hershey Pennsylvania USA
3. Department of Chemistry and Biochemistry University of South Carolina Columbia South Carolina USA
4. Department of Pathology and Laboratory Medicine Brody School of Medicine East Carolina University Greenville North Carolina USA
Abstract
AbstractThe tight junction protein claudin‐7 is essential for tight junction function and intestinal homeostasis. Cldn7 deletion in mice leads to an inflammatory bowel disease‐like phenotype exhibiting severe intestinal epithelial damage, weight loss, inflammation, mucosal ulcerations, and epithelial hyperplasia. Claudin‐7 has also been shown to be involved in cancer metastasis and invasion. Here, we test our hypothesis that claudin‐7 plays an important role in regulating colonic intestinal stem cell function. Conditional knockout of Cldn7 in the colon led to impaired epithelial cell differentiation, hyperproliferative epithelium, a decrease in active stem cells, and dramatically altered gene expression profiles. In 3D colonoid culture, claudin‐7–deficient crypts were unable to survive and form spheroids, emphasizing the importance of claudin‐7 in stem cell survival. Inhibition of the Hippo pathway or activation of Notch signaling partially rescued the defective stem cell behavior. Concurrent Notch activation and Hippo inhibition resulted in restored colonoid survival, growth, and differentiation to the level comparable to those of wild‐type derived crypts. In this study, we highlight the essential role of claudin‐7 in regulating Notch and Hippo signaling–dependent colonic stem cell functions, including survival, self‐renewal, and differentiation. These new findings may shed light on potential avenues to explore for drug development in colorectal cancer.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献