Chronic ethanol exposure induces mitochondrial dysfunction and alters gene expression and metabolism in human cardiac spheroids

Author:

Hwang Hyun1ORCID,Liu Rui1,Eldridge Ronald2,Hu Xin3,Forghani Parvin1,Jones Dean P.3,Xu Chunhui14ORCID

Affiliation:

1. Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta Georgia USA

2. Nell Hodgson Woodruff School of Nursing Emory University Atlanta Georgia USA

3. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine Emory University Atlanta Georgia USA

4. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia USA

Abstract

AbstractBackgroundChronic alcohol consumption in adults can induce various cardiac toxicities such as arrhythmias, cardiomyopathy, and heart failure. Prenatal alcohol exposure can increase the risk of developing congenital heart defects among offspring. Understanding the molecular mechanisms underlying long‐term alcohol exposure‐induced cardiotoxicity can help guide the development of therapeutic strategies.MethodsCardiomyocytes derived from human‐induced pluripotent stem cells (hiPSC‐CMs) were engineered into cardiac spheroids and treated with clinically relevant concentrations of ethanol (17 and 50 mM) for 5 weeks. The cells were then analyzed for changes in mitochondrial features, transcriptomic and metabolomic profiles, and integrated omics outcomes.ResultsFollowing chronic ethanol treatment of hiPSC‐CMs, a decrease in mitochondrial membrane potential and respiration and changes in expression of mitochondrial function‐related genes were observed. RNA‐sequencing analysis revealed changes in various metabolic processes, heart development, response to hypoxia, and extracellular matrix‐related activities. Metabolomic analysis revealed dysregulation of energy metabolism and increased metabolites associated with the upregulation of inflammation. Integrated omics analysis further identified functional subclusters and revealed potentially affected pathways associated with cardiac toxicities.ConclusionChronic ethanol treatment of hiPSC‐CMs resulted in overall decreased mitochondrial function, increased glycolysis, disrupted fatty acid oxidation, and impaired cardiac structural development.

Funder

National Institutes of Health

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3