Hydrogen in magnetite from asteroid Ryugu

Author:

Aléon J.1,Mostefaoui S.1,Bureau H.1,Vangu D.1,Khodja H.2,Nagashima K.3ORCID,Kawasaki N.4ORCID,Abe Y.5,Alexander C. M. O'D.6,Amari S.78,Amelin Y.9,Bajo K.4,Bizzarro M.10,Bouvier A.11ORCID,Carlson R. W.6,Chaussidon M.12,Choi B.‐G.13,Dauphas N.14,Davis A. M.14,Di Rocco T.15,Fujiya W.16ORCID,Fukai R.17ORCID,Gautam I.18,Haba M. K.18ORCID,Hibiya Y.19,Hidaka H.20,Homma H.21,Hoppe P.22,Huss G. R.3ORCID,Ichida K.23,Iizuka T.24ORCID,Ireland T. R.25,Ishikawa A.18,Itoh S.26,Kita N. T.27ORCID,Kitajima K.27,Kleine T.28,Komatani S.23,Krot A. N.3ORCID,Liu M.‐C.2930,Masuda Y.18ORCID,Morita M.23,Motomura K.31,Moynier F.12,Nakai I.32,Nguyen A.33ORCID,Nittler L. R.6,Onose M.23,Pack A.15,Park C.34ORCID,Piani L.35,Qin L.36,Russell S. S.37ORCID,Sakamoto N.38,Schönbächler M.39ORCID,Tafla L.29,Tang H.29,Terada K.40,Terada Y.41,Usui T.17,Wada S.4,Wadhwa M.42,Walker R. J.43ORCID,Yamashita K.44,Yin Q.‐Z.45,Yokoyama T.18,Yoneda S.46,Young E. D.29ORCID,Yui H.47,Zhang A.‐C.48ORCID,Nakamura T.49,Naraoka H.50,Noguchi T.26ORCID,Okazaki R.50,Sakamoto K.17,Yabuta H.51,Abe M.17,Miyazaki A.17,Nakato A.17,Nishimura M.17,Okada T.17,Yada T.17,Yogata K.17,Nakazawa S.17,Saiki T.17,Tanaka S.17,Terui F.52,Tsuda Y.17,Watanabe S.20,Yoshikawa M.17,Tachibana S.53ORCID,Yurimoto H.4ORCID

Affiliation:

1. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle, CNRS UMR 7590, IRD Paris France

2. Université Paris‐Saclay, CEA, CNRS, NIMBE, LEEL Gif‐sur‐Yvette France

3. Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa Honolulu Hawaii USA

4. Department of Natural History Sciences Hokkaido University Sapporo Japan

5. Graduate School of Engineering Materials Science and Engineering Tokyo Denki University Tokyo Japan

6. Earth and Planets Laboratory, Carnegie Institution for Science Washington DC USA

7. McDonnell Center for the Space Sciences and Physics Department Washington University St. Louis Missouri USA

8. Geochemical Research Center The University of Tokyo Tokyo Japan

9. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences Guangzhou Guangdong China

10. Centre for Star and Planet Formation GLOBE Institute, University of Copenhagen Copenhagen Denmark

11. Bayerisches Geoinstitut Universität Bayreuth Bayreuth Germany

12. Institut de Physique du Globe de Paris, CNRS, Université de Paris Paris France

13. Department of Earth Science Education Seoul National University Seoul Republic of Korea

14. Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago Chicago Illinois USA

15. Faculty of Geosciences and Geography University of Göttingen Göttingen Germany

16. Faculty of Science Ibaraki University Mito Japan

17. ISAS/JSEC, JAXA Sagamihara Japan

18. Department of Earth and Planetary Sciences Tokyo Institute of Technology Tokyo Japan

19. General Systems Studies The University of Tokyo Tokyo Japan

20. Earth and Planetary Sciences Nagoya University Nagoya Japan

21. Osaka Application Laboratory, SBUWDX, Rigaku Corporation Osaka Japan

22. Max Planck Institute for Chemistry Mainz Germany

23. Analytical Technology, Horiba Techno Service Co., Ltd. Kyoto Japan

24. Earth and Planetary Science The University of Tokyo Tokyo Japan

25. School of Earth and Environmental Sciences The University of Queensland St Lucia Queensland Australia

26. Earth and Planetary Sciences Kyoto University Kyoto Japan

27. Geoscience, University of Wisconsin‐Madison Madison Wisconsin USA

28. Max Planck Institute for Solar System Research Göttingen Germany

29. Earth, Planetary, and Space Sciences, UCLA Los Angeles California USA

30. Lawrence Livermore National Laboratory Livermore California USA

31. Thermal Analysis, Rigaku Corporation Tokyo Japan

32. Applied Chemistry Tokyo University of Science Tokyo Japan

33. Astromaterials Research and Exploration Science, NASA Johnson Space Center Houston Texas USA

34. Earth‐System Sciences Korea Polar Research Institute Incheon Korea

35. Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine Nancy France

36. School of Earth and Space Sciences, University of Science and Technology of China Anhui China

37. Department of Earth Sciences Natural History Museum London UK

38. Isotope Imaging Laboratory Creative Research Institution, Hokkaido University Sapporo Japan

39. Department of Earth Sciences, ETH Zurich, Institute for Geochemistry and Petrology Zurich Switzerland

40. Earth and Space Science Osaka University Osaka Japan

41. Spectroscopy and Imaging Japan Synchrotron Radiation Research Institute Hyogo Japan

42. School of Earth and Space Exploration Arizona State University Tempe Arizona USA

43. Geology University of Maryland College Park Maryland USA

44. Graduate School of Natural Science and Technology Okayama University Okayama Japan

45. Earth and Planetary Sciences University of California Davis California USA

46. Science and Engineering, National Museum of Nature and Science Tsukuba Japan

47. Chemistry, Tokyo University of Science Tokyo Japan

48. School of Earth Sciences and Engineering, Nanjing University Nanjing China

49. Department of Earth Science Tohoku University Sendai Japan

50. Department of Earth and Planetary Sciences Kyushu University Fukuoka Japan

51. Earth and Planetary Systems Science Program Hiroshima University Higashi‐Hiroshima Japan

52. Kanagawa Institute of Technology Atsugi Japan

53. UTokyo Organization for Planetary and Space Science University of Tokyo Tokyo Japan

Abstract

AbstractIn order to gain insights on the conditions of aqueous alteration on asteroid Ryugu and the origin of water in the outer solar system, we developed the measurement of water content in magnetite at the micrometer scale by secondary ion mass spectrometry (NanoSIMS) and determined the H and Si content of coarse‐grained euhedral magnetite grains (polyhedral magnetite) and coarse‐grained fibrous (spherulitic) magnetite from the Ryugu polished section A0058‐C1001. The hydrogen content in magnetite ranges between ~900 and ~3300 wt ppm equivalent water and is correlated with the Si content. Polyhedral magnetite has low and homogenous silicon and water content, whereas fibrous magnetite shows correlated Si and water excesses. These excesses can be explained by the presence of hydrous Si‐rich amorphous nanoinclusions trapped during the precipitation of fibrous magnetite away from equilibrium and testify that fibrous magnetite formed from a hydrous gel with possibly more than 20 wt% water. An attempt to determine the water content in sub‐μm framboids indicates that additional calibration and contamination issues must be addressed before a safe conclusion can be drawn, but hints at elevated water content as well. The high water content in fibrous magnetite, expected to be among the first minerals to crystallize at low water–rock ratio, points to the control of water content by local conditions of magnetite precipitation rather than large‐scale alteration conditions. Systematic lithological variations associated with water‐rich and water‐poor magnetite suggest that the global context of alteration may be better understood if local water concentrations are compared with millimeter‐scale distribution of the various morphologies of magnetite. Finally, the high water content in the magnetite precursor gel indicates that the initial O isotopic composition in alteration water must not have been very different from that of the earliest magnetite crystals.

Funder

Centre National de la Recherche Scientifique

Muséum National d'Histoire Naturelle

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3