Quantitative evolved gas analysis: Winchcombe in comparison with other CM2 meteorites

Author:

Verchovsky A. В.1ORCID,Abernethy F. A. J.1ORCID,Anand M.1,Barber S. J.1,Findlay R.1,Franchi I. A.1ORCID,Greenwood R. C.1,Grady M. M.1

Affiliation:

1. School of Physical Sciences The Open University Milton Keynes UK

Abstract

AbstractTwo bulk Winchcombe along with six other CM2 meteorite samples were subjected to quantitative evolved gas analysis. The observed release patterns for almost all volatile species demonstrate close similarity for all the samples and especially between those for Winchcombe. This can be considered as a fingerprint for this petrological type of meteorites. We identified several gases including H2, H2O, O2, CO, CO2, and SO2 released in different temperature ranges. The sources and mechanisms of their release were also established. Some of the gases, H2, CO, and CO2, are released as a result of oxidation of macromolecular organic material from oxygen derived from oxygen‐bearing minerals (a part of CO2 is also released as a result of decomposition of carbonates). The others, O2 and H2O, are associated with the phase transformation/decomposition of phyllosilicates and (oxy)hydrates, while a high‐temperature release of SO2 is associated mostly with the decomposition of sulfides and in few cases also with sulfates. A low‐temperature release of SO2 is due to evaporation and oxidation of elemental sulfur from the meteoritic matrix and organic material. The total concentrations of H (mostly represented by H2O), C, and S, calculated according to calibration of the quadrupole mass spectrometer with reference gases and decomposition of solid samples (CaSO4·2H2O and NaHCO3) are in reasonable agreement with those determined by independent methods. Variations in the ratio of the carbon amounts released as CO2 and CO (/CCO) between the samples could be an indicator of their terrestrial weathering.

Funder

Science and Technology Facilities Council

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3