Severe Preharvest Drought Elevates Respiration and Storage Rot in Postharvest Sugarbeet Roots

Author:

Lafta Abbas M.1,Eide John D.2,Khan Mohamed F. R.13,Finger Fernando L.4,Fugate Karen K.2

Affiliation:

1. Department of Plant Pathology North Dakota State University Fargo North Dakota USA

2. USDA‐ARS, Edward T. Schafer Agricultural Research Center Fargo North Dakota USA

3. University of Minnesota Extension Service St. Paul Minnesota USA

4. Departamento de Agronomia Universidade Federal de Viҫosa Viҫosa MG Brazil

Abstract

ABSTRACTSugarbeets are largely produced without irrigation, making drought stress inevitable when rainfall is insufficient. Whether drought stress impacts root storage, however, is currently unknown. Research was conducted to determine the effect of preharvest water stress on postharvest sugarbeet root respiration rate and susceptibility to storage rots as these traits are the primary determinants for sucrose loss and quality deterioration. Greenhouse‐grown plants were subjected to four levels of water deficit by discontinuing watering for 0, 7, 14 or 21 days prior to harvest. Plants receiving water‐restrictive treatments displayed physiological stress by leaf epinasty, reductions in net photosynthetic rate and leaf relative water content and increases in leaf temperature, whereas the water content of roots harvested from these plants progressively decreased with the severity of the preharvest water‐deficit treatment. Harvested roots from all watering treatments were stored at 10°C and 95% relative humidity for up to 12 weeks and evaluated for respiration rate and susceptibility to storage rot. Root respiration rate during storage was inversely related to root water content at harvest by second‐order equations, such that respiration was not significantly affected by minor reductions in root water content but increased exponentially for roots obtained from severely drought‐stressed plants with water contents at harvest of ≤75%. Similarly, roots with water contents ≤75% had elevated levels of electrolyte leakage, a measure of cellular membrane damage, and were more susceptible to dehydration and fungal infection during storage. In separate experiments, roots harvested from water‐stressed plants were inoculated with Botrytis cinerea or Penicillium vulpinum, two causal agents for storage rots. In these experiments, preharvest water stress quantitatively increased root rot and qualitatively altered symptoms of their infection. Overall, these results demonstrate that severe preharvest drought stress is likely to significantly increase sugarbeet root storage losses caused by root respiration and storage rots and that storage losses are likely to accelerate with time in storage. However, mild‐to‐moderate drought conditions prior to harvest are expected to have no or minimal effect on storage losses from root respiration or storage rots.

Funder

Beet Sugar Development Foundation

Agricultural Research Service

Publisher

Wiley

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3